Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 19 de 19
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
Nat Cell Biol ; 25(12): 1758-1773, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37919520

RÉSUMÉ

Skeletal muscle stem and progenitor cells including those derived from human pluripotent stem cells (hPSCs) offer an avenue towards personalized therapies and readily fuse to form human-mouse myofibres in vivo. However, skeletal muscle progenitor cells (SMPCs) inefficiently colonize chimeric stem cell niches and instead associate with human myofibres resembling foetal niches. We hypothesized competition with mouse satellite cells (SCs) prevented SMPC engraftment into the SC niche and thus generated an SC ablation mouse compatible with human engraftment. Single-nucleus RNA sequencing of SC-ablated mice identified the absence of a transient myofibre subtype during regeneration expressing Actc1. Similarly, ACTC1+ human myofibres supporting PAX7+ SMPCs increased in SC-ablated mice, and after re-injury we found SMPCs could now repopulate into chimeric niches. To demonstrate ACTC1+ myofibres are essential to supporting PAX7 SMPCs, we generated caspase-inducible ACTC1 depletion human pluripotent stem cells, and upon SMPC engraftment we found a 90% reduction in ACTC1+ myofibres and a 100-fold decrease in PAX7 cell numbers compared with non-induced controls. We used spatial RNA sequencing to identify key factors driving emerging human niche formation between ACTC1+ myofibres and PAX7+ SMPCs in vivo. This revealed that transient regenerating human myofibres are essential for emerging niche formation in vivo to support PAX7 SMPCs.


Sujet(s)
Muscles squelettiques , Facteur de transcription PAX7 , Régénération , Cellules satellites du muscle squelettique , Animaux , Humains , Souris , Muscles squelettiques/physiologie , Facteur de transcription PAX7/génétique , Facteur de transcription PAX7/métabolisme , Cellules souches pluripotentes , Cellules satellites du muscle squelettique/physiologie
3.
iScience ; 25(11): 105415, 2022 Nov 18.
Article de Anglais | MEDLINE | ID: mdl-36388984

RÉSUMÉ

Duchenne muscular dystrophy (DMD) is caused by out-of-frame mutations in the DMD gene resulting in the absence of a functional dystrophin protein, leading to a devastating and progressive lethal muscle-wasting disease. Little is known about cellular heterogeneity as disease severity increases. Advances in single-cell RNA sequencing (scRNA-seq) enabled us to explore skeletal muscle-resident cell populations in healthy, dystrophic, and severely dystrophic mouse models. We found increased frequencies of activated fibroblasts, fibro-adipogenic progenitor cells, and pro-inflammatory macrophages in dystrophic gastrocnemius muscles and an upregulation of extracellular matrix genes on endothelial cells in dystrophic and severely dystrophic muscles. We observed a pronounced risk of clotting, especially in the severely dystrophic mice with increased expression of plasminogen activator inhibitor-1 in endothelial cells, indicating endothelial cell impairment as disease severity increases. This work extends our understanding of the severe nature of DMD which should be considered when developing single or combinatorial approaches for DMD.

4.
Mol Ther Nucleic Acids ; 29: 979-995, 2022 Sep 13.
Article de Anglais | MEDLINE | ID: mdl-36189080

RÉSUMÉ

The use of T cells from healthy donors for allogeneic chimeric antigen receptor T (CAR-T) cell cancer therapy is attractive because healthy donor T cells can produce versatile off-the-shelf CAR-T treatments. To maximize safety and durability of allogeneic products, the endogenous T cell receptor and major histocompatibility complex class I molecules are often removed via knockout of T cell receptor beta constant (TRBC) (or T cell receptor alpha constant [TRAC]) and B2M, respectively. However, gene editing tools (e.g., CRISPR-Cas9) can display poor fidelity, which may result in dangerous off-target mutations. Additionally, many gene editing technologies require T cell activation, resulting in a low percentage of desirable stem cell memory T cells (TSCM). We characterize an RNA-guided endonuclease, called Cas-CLOVER, consisting of the Clo051 nuclease domain fused with catalytically dead Cas9. In primary T cells from multiple donors, we find that Cas-CLOVER is a high-fidelity site-specific nuclease, with low off-target activity. Notably, Cas-CLOVER yields efficient multiplexed gene editing in resting T cells. In conjunction with the piggyBac transposon for delivery of a CAR transgene against the B cell maturation antigen (BCMA), we produce allogeneic CAR-T cells composed of high percentages of TSCM cells and possessing potent in vivo anti-tumor cytotoxicity.

5.
Nat Cancer ; 3(8): 961-975, 2022 08.
Article de Anglais | MEDLINE | ID: mdl-35982179

RÉSUMÉ

Rhabdomyosarcoma (RMS) is a common childhood cancer that shares features with developing skeletal muscle. Yet, the conservation of cellular hierarchy with human muscle development and the identification of molecularly defined tumor-propagating cells has not been reported. Using single-cell RNA-sequencing, DNA-barcode cell fate mapping and functional stem cell assays, we uncovered shared tumor cell hierarchies in RMS and human muscle development. We also identified common developmental stages at which tumor cells become arrested. Fusion-negative RMS cells resemble early myogenic cells found in embryonic and fetal development, while fusion-positive RMS cells express a highly specific gene program found in muscle cells transiting from embryonic to fetal development at 7-7.75 weeks of age. Fusion-positive RMS cells also have neural pathway-enriched states, suggesting less-rigid adherence to muscle-lineage hierarchies. Finally, we identified a molecularly defined tumor-propagating subpopulation in fusion-negative RMS that shares remarkable similarity to bi-potent, muscle mesenchyme progenitors that can make both muscle and osteogenic cells.


Sujet(s)
Rhabdomyosarcome embryonnaire , Rhabdomyosarcome , Enfant , Humains , Muscles squelettiques/anatomopathologie , Rhabdomyosarcome/génétique , Analyse sur cellule unique , Cellules souches/anatomopathologie
7.
Exp Cell Res ; 411(2): 112990, 2022 02 15.
Article de Anglais | MEDLINE | ID: mdl-34973262

RÉSUMÉ

Human pluripotent stem cells (hPSCs) provide a human model for developmental myogenesis, disease modeling and development of therapeutics. Differentiation of hPSCs into muscle stem cells has the potential to provide a cell-based therapy for many skeletal muscle wasting diseases. This review describes the current state of hPSCs towards recapitulating human myogenesis ex vivo, considerations of stem cell and progenitor cell state as well as function for future use of hPSC-derived muscle cells in regenerative medicine.


Sujet(s)
Développement musculaire/physiologie , Cellules souches pluripotentes/cytologie , Cellules souches pluripotentes/physiologie , Différenciation cellulaire/physiologie , Humains , Modèles biologiques , Développement musculaire/génétique , Muscles squelettiques/cytologie , Muscles squelettiques/physiologie , Myoblastes squelettiques/cytologie , Myoblastes squelettiques/physiologie , Facteur de transcription PAX7/génétique , Facteur de transcription PAX7/métabolisme , Cellules satellites du muscle squelettique/cytologie , Cellules satellites du muscle squelettique/physiologie
8.
Nat Commun ; 12(1): 2595, 2021 05 10.
Article de Anglais | MEDLINE | ID: mdl-33972536

RÉSUMÉ

Tissue regeneration is a process that recapitulates and restores organ structure and function. Although previous studies have demonstrated wound-induced hair neogenesis (WIHN) in laboratory mice (Mus), the regeneration is limited to the center of the wound unlike those observed in African spiny (Acomys) mice. Tissue mechanics have been implicated as an integral part of tissue morphogenesis. Here, we use the WIHN model to investigate the mechanical and molecular responses of laboratory and African spiny mice, and report these models demonstrate opposing trends in spatiotemporal morphogenetic field formation with association to wound stiffness landscapes. Transcriptome analysis and K14-Cre-Twist1 transgenic mice show the Twist1 pathway acts as a mediator for both epidermal-dermal interactions and a competence factor for periodic patterning, differing from those used in development. We propose a Turing model based on tissue stiffness that supports a two-scale tissue mechanics process: (1) establishing a morphogenetic field within the wound bed (mm scale) and (2) symmetry breaking of the epidermis and forming periodically arranged hair primordia within the morphogenetic field (µm scale). Thus, we delineate distinct chemo-mechanical events in building a Turing morphogenesis-competent field during WIHN of laboratory and African spiny mice and identify its evo-devo advantages with perspectives for regenerative medicine.


Sujet(s)
Épiderme/anatomie et histologie , Épiderme/métabolisme , Follicule pileux/métabolisme , Morphogenèse/physiologie , Régénération/physiologie , Protéine-1 apparentée à Twist/métabolisme , Cicatrisation de plaie/physiologie , Animaux , Épiderme/physiologie , Analyse de profil d'expression de gènes , Follicule pileux/anatomie et histologie , Follicule pileux/physiologie , Immunohistochimie , Souris , Souris de lignée C57BL , Souris transgéniques , Analyse sur microréseau , Microscopie à force atomique , Modèles psychologiques , Morphogenèse/génétique , Murinae , RNA-Seq , Régénération/génétique , Médecine régénérative , Transduction du signal/génétique , Transduction du signal/physiologie , Analyse spatio-temporelle , Protéine-1 apparentée à Twist/génétique , Cicatrisation de plaie/génétique
9.
STAR Protoc ; 1(3): 100158, 2020 12 18.
Article de Anglais | MEDLINE | ID: mdl-33377052

RÉSUMÉ

This protocol describes the use of CRISPR/Cas9-mediated homology-directed recombination to construct a PAX7-GFP reporter in human pluripotent stem cells (hPSCs). PAX7 is a key transcription factor and regulator of skeletal muscle stem/progenitor cells. We obtained heterozygous knockin reporter cells and validated their PAX7 expression using both artificial activation by the CRISPR/dCas9-VPR system and physiological activation during hPSC myogenic differentiation. These cells can serve as tools for better understanding of in vitro hPSC myogenesis and enriching myogenic cells for downstream analysis. For complete details on the use and execution of this protocol, please refer to Xi et al. (2017) and Xi et al. (2020).


Sujet(s)
Gènes rapporteurs , Développement musculaire , Facteur de transcription PAX7/métabolisme , Cellules souches pluripotentes/métabolisme , Régions 3' non traduites/génétique , Séquence d'acides aminés , Animaux , Séquence nucléotidique , Sites de fixation , Protéine-9 associée à CRISPR/métabolisme , Systèmes CRISPR-Cas/génétique , Numération cellulaire , Différenciation cellulaire , Séquence conservée , Résistance microbienne aux médicaments , Génotype , Humains , Mammifères , Mésoderme/embryologie , microARN/génétique , microARN/métabolisme , Facteur de transcription PAX7/composition chimique , Plasmides/génétique , Isoformes de protéines/composition chimique , Isoformes de protéines/métabolisme , /génétique , Reproductibilité des résultats , Somites/embryologie
11.
Cell Stem Cell ; 27(1): 158-176.e10, 2020 07 02.
Article de Anglais | MEDLINE | ID: mdl-32396864

RÉSUMÉ

The developmental trajectory of human skeletal myogenesis and the transition between progenitor and stem cell states are unclear. We used single-cell RNA sequencing to profile human skeletal muscle tissues from embryonic, fetal, and postnatal stages. In silico, we identified myogenic as well as other cell types and constructed a "roadmap" of human skeletal muscle ontogeny across development. In a similar fashion, we also profiled the heterogeneous cell cultures generated from multiple human pluripotent stem cell (hPSC) myogenic differentiation protocols and mapped hPSC-derived myogenic progenitors to an embryonic-to-fetal transition period. We found differentially enriched biological processes and discovered co-regulated gene networks and transcription factors present at distinct myogenic stages. This work serves as a resource for advancing our knowledge of human myogenesis. It also provides a tool for a better understanding of hPSC-derived myogenic progenitors for translational applications in skeletal muscle-based regenerative medicine.


Sujet(s)
Développement musculaire , Cellules souches pluripotentes , Différenciation cellulaire , Humains , Muscles squelettiques , Facteurs de transcription
12.
JCI Insight ; 4(24)2019 12 19.
Article de Anglais | MEDLINE | ID: mdl-31852842

RÉSUMÉ

Massive tears of the rotator cuff (RC) are associated with chronic muscle degeneration due to fibrosis, fatty infiltration, and muscle atrophy. The microenvironment of diseased muscle often impairs efficient engraftment and regenerative activity of transplanted myogenic precursors. Accumulating myofibroblasts and fat cells disrupt the muscle stem cell niche and myogenic cell signaling and deposit excess disorganized connective tissue. Therefore, restoration of the damaged stromal niche with non-fibro-adipogenic cells is a prerequisite to successful repair of an injured RC. We generated from human embryonic stem cells (hES) a potentially novel subset of PDGFR-ß+CD146+CD34-CD56- pericytes that lack expression of the fibro-adipogenic cell marker PDGFR-α. Accordingly, the PDGFR-ß+PDGFR-α- phenotype typified non-fibro-adipogenic, non-myogenic, pericyte-like derivatives that maintained non-fibro-adipogenic properties when transplanted into chronically injured murine RCs. Although administered hES pericytes inhibited developing fibrosis at early and late stages of progressive muscle degeneration, transplanted PDGFR-ß+PDGFR-α+ human muscle-derived fibro-adipogenic progenitors contributed to adipogenesis and greater fibrosis. Additionally, transplanted hES pericytes substantially attenuated muscle atrophy at all tested injection time points after injury. Coinciding with this observation, conditioned medium from cultured hES pericytes rescued atrophic myotubes in vitro. These findings imply that non-fibro-adipogenic hES pericytes recapitulate the myogenic stromal niche and may be used to improve cell-based treatments for chronic muscle disorders.


Sujet(s)
Cellules souches embryonnaires humaines/physiologie , Amyotrophies/thérapie , Péricytes/transplantation , Lésions de la coiffe des rotateurs/complications , Coiffe des rotateurs/anatomopathologie , Animaux , Différenciation cellulaire , Lignée cellulaire , Maladie chronique/thérapie , Modèles animaux de maladie humaine , Femelle , Fibrose , Humains , Injections intralésionnelles , Souris , Développement musculaire/physiologie , Amyotrophies/étiologie , Amyotrophies/anatomopathologie , Amyotrophies/physiopathologie , Péricytes/physiologie , Coiffe des rotateurs/physiopathologie , Transplantation hétérologue/méthodes
13.
Science ; 366(6466): 684-685, 2019 11 08.
Article de Anglais | MEDLINE | ID: mdl-31699921
14.
Nat Cell Biol ; 20(1): 46-57, 2018 01.
Article de Anglais | MEDLINE | ID: mdl-29255171

RÉSUMÉ

Human pluripotent stem cells (hPSCs) can be directed to differentiate into skeletal muscle progenitor cells (SMPCs). However, the myogenicity of hPSC-SMPCs relative to human fetal or adult satellite cells remains unclear. We observed that hPSC-SMPCs derived by directed differentiation are less functional in vitro and in vivo compared to human satellite cells. Using RNA sequencing, we found that the cell surface receptors ERBB3 and NGFR demarcate myogenic populations, including PAX7 progenitors in human fetal development and hPSC-SMPCs. We demonstrated that hPSC skeletal muscle is immature, but inhibition of transforming growth factor-ß signalling during differentiation improved fusion efficiency, ultrastructural organization and the expression of adult myosins. This enrichment and maturation strategy restored dystrophin in hundreds of dystrophin-deficient myofibres after engraftment of CRISPR-Cas9-corrected Duchenne muscular dystrophy human induced pluripotent stem cell-SMPCs. The work provides an in-depth characterization of human myogenesis, and identifies candidates that improve the in vivo myogenic potential of hPSC-SMPCs to levels that are equal to directly isolated human fetal muscle cells.


Sujet(s)
Développement musculaire/génétique , Fibres musculaires squelettiques/métabolisme , Myopathie de Duchenne/génétique , Myoblastes/métabolisme , Protéines de tissu nerveux/génétique , Récepteur ErbB-3/génétique , Récepteurs facteur croissance nerf/génétique , Adulte , Sujet âgé , Systèmes CRISPR-Cas , Différenciation cellulaire , Dystrophine/génétique , Dystrophine/métabolisme , Femelle , Édition de gène , Régulation de l'expression des gènes au cours du développement , Humains , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/métabolisme , Mâle , Adulte d'âge moyen , Fibres musculaires squelettiques/cytologie , Myopathie de Duchenne/métabolisme , Myopathie de Duchenne/anatomopathologie , Myopathie de Duchenne/thérapie , Myoblastes/cytologie , Myosines/génétique , Myosines/métabolisme , Protéines de tissu nerveux/métabolisme , Facteur de transcription PAX7/génétique , Facteur de transcription PAX7/métabolisme , Récepteur ErbB-3/métabolisme , Récepteurs facteur croissance nerf/métabolisme , Transduction du signal , Facteur de croissance transformant bêta/génétique , Facteur de croissance transformant bêta/métabolisme
15.
Cell Rep ; 18(6): 1573-1585, 2017 02 07.
Article de Anglais | MEDLINE | ID: mdl-28178531

RÉSUMÉ

Somites form during embryonic development and give rise to unique cell and tissue types, such as skeletal muscles and bones and cartilage of the vertebrae. Using somitogenesis-stage human embryos, we performed transcriptomic profiling of human presomitic mesoderm as well as nascent and developed somites. In addition to conserved pathways such as WNT-ß-catenin, we also identified BMP and transforming growth factor ß (TGF-ß) signaling as major regulators unique to human somitogenesis. This information enabled us to develop an efficient protocol to derive somite cells in vitro from human pluripotent stem cells (hPSCs). Importantly, the in-vitro-differentiating cells progressively expressed markers of the distinct developmental stages that are known to occur during in vivo somitogenesis. Furthermore, when subjected to lineage-specific differentiation conditions, the hPSC-derived somite cells were multipotent in generating somite derivatives, including skeletal myocytes, osteocytes, and chondrocytes. This work improves our understanding of human somitogenesis and may enhance our ability to treat diseases affecting somite derivatives.


Sujet(s)
Développement embryonnaire/physiologie , Morphogenèse/physiologie , Cellules souches pluripotentes/physiologie , Somites/physiologie , Plan d'organisation du corps/physiologie , Différenciation cellulaire/physiologie , Cellules cultivées , Régulation de l'expression des gènes au cours du développement/physiologie , Humains , Mésoderme/métabolisme , Mésoderme/physiologie , Muscles squelettiques/métabolisme , Muscles squelettiques/physiologie , Cellules souches pluripotentes/métabolisme , Transduction du signal/physiologie , Somites/métabolisme , Facteur de croissance transformant bêta/métabolisme , bêta-Caténine/métabolisme
16.
IUBMB Life ; 66(2): 110-21, 2014 Feb.
Article de Anglais | MEDLINE | ID: mdl-24578297

RÉSUMÉ

Through the eons of time, out of all possible configurations, nature has selected glucose not only as a vital source of energy to sustain life but also as the molecule who's structure supplies the appropriate elements required for a cell to grow and multiply. This understanding, at least in part, explains the profound effects that the analog of glucose, 2-deoxy-d-glucose, has been shown to have on as common and widespread diseases as cancer, viral infection, aging-related morbidity, epilepsy, and others. This review is confined to summarizing some of the salient findings of this remarkable compound as they relate mainly to cancer.


Sujet(s)
Désoxyglucose/métabolisme , Stress du réticulum endoplasmique/génétique , Tumeurs/métabolisme , Réplication virale/génétique , Apoptose/génétique , Autophagie/génétique , Désoxyglucose/génétique , Glycosylation , Humains , Hypoxie , Tumeurs/génétique , Tumeurs/anatomopathologie
17.
Cancer Chemother Pharmacol ; 72(1): 251-62, 2013 Jul.
Article de Anglais | MEDLINE | ID: mdl-23700291

RÉSUMÉ

BACKGROUND: Inhibition of glucose metabolism has recently become an attractive target for cancer treatment. Accordingly, since 2-deoxyglucose (2-DG) competes effectively with glucose, it has come under increasing scrutiny as a therapeutic agent. The initial response of tumor cells to 2-DG is growth inhibition, which is thought to conserve energy and consequently protect cells from its ATP-lowering effects as a glycolytic inhibitor. However, since 2-DG also mimics mannose and thereby interferes with N-linked glycosylation, the question is raised of how this sugar analog inhibits tumor cell growth and whether the mechanism by which it protects cells can be manipulated to convert 2-DG-induced growth inhibition to cell death. METHODS: Cell growth and death were measured via counting viable and dead cells based on trypan blue exclusion. Markers of ATP reduction and the unfolded protein response (UPR) were detected by Western blot. Protein functions were manipulated through chemical compounds, siRNA and the use of gene-specific wild-type and knock-out mouse embryonic fibroblasts (MEFs). RESULTS: At 2-DG concentrations that can be achieved in human plasma without causing significant side effects, we find (a) It induces growth inhibition predominantly by interference with glycosylation, which leads to accumulation of unfolded proteins in the endoplasmic reticulum activating the UPR; (b) Inhibition of PERK (but not ATF6 or IRE1), a major component of the UPR, leads to conversion of 2-DG-induced growth inhibition to cell death and (c) secondarily to PERK, inhibition of GCN2, a kinase that is activated in response to low intracellular glutamine, increases 2-DG's cytotoxic effects in PERK -/- MEFs. CONCLUSIONS: Overall, these findings present a novel anticancer strategy that can be translated into therapeutic gain as they uncover the metabolic target PERK, and to a lesser degree GCN2, that when inhibited convert 2-DG's static effect to a toxic one in tumor cells growing under normoxia.


Sujet(s)
Antimétabolites antinéoplasiques/pharmacologie , Désoxyglucose/pharmacologie , Tumeurs/traitement médicamenteux , Inhibiteurs de protéines kinases/pharmacologie , Protein-Serine-Threonine Kinases/antagonistes et inhibiteurs , Réponse aux protéines mal repliées/effets des médicaments et des substances chimiques , eIF-2 Kinase/antagonistes et inhibiteurs , Facteur de transcription ATF-6/antagonistes et inhibiteurs , Facteur de transcription ATF-6/génétique , Facteur de transcription ATF-6/métabolisme , Animaux , Marqueurs biologiques/métabolisme , Mort cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Glycosylation/effets des médicaments et des substances chimiques , Humains , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Souris , Tumeurs/métabolisme , Maturation post-traductionnelle des protéines/effets des médicaments et des substances chimiques , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/métabolisme , Interférence par ARN , eIF-2 Kinase/génétique , eIF-2 Kinase/métabolisme
18.
Biochem Pharmacol ; 85(10): 1463-77, 2013 May 15.
Article de Anglais | MEDLINE | ID: mdl-23500541

RÉSUMÉ

Autophagy, a well-conserved cellular self-eating process, has been shown to play a critical role in the pathophysiology of cancer. Previously, we reported that under normal O2 conditions (21% O2), the dual glucose metabolism inhibitor 2-deoxyglucose (2-DG) activates a cytoprotective autophagic response in cancer cells mainly through the induction of endoplasmic reticulum (ER) stress rather than ATP² reduction. However, the pathway(s) by which this occurs was unknown. Here, we find that ER stress induced by 2-DG as well as tunicamycin activates AMPK via Ca²âº-CaMKKß leading to stimulation of autophagy. These results suggest a new role for AMPK as a sensor of ER stress. In contrast, we find that although physiologic glucose starvation (GS) leads to ER stress which contributes to autophagy activation, it does so by a different mechanism. In addition to ER stress, GS also stimulates autophagy through lowering ATP and activating the canonical LKB1-AMPK energy sensing pathway as well as through increasing reactive oxygen species resulting in the activation of ERK. Furthermore, under hypoxia we observe that both 2-DG and GS inhibit rather than activate autophagy. This inhibition correlates with dramatically depleted ATP levels, and occurs through reduction of the PI3K III-Beclin1 complex for autophagy initiation, blockage of the conjugation of ATG12 to ATG5 for autophagosome expansion, as well as inhibition of the functional lysosomal compartment for autophagic degradation. Taken together, our data support a model where under normoxia therapeutic (2-DG) and physiologic (GS) glucose restriction differentially activate autophagy, while under hypoxia they similarly inhibit it.


Sujet(s)
Autophagie/effets des médicaments et des substances chimiques , Calcium-Calmodulin-Dependent Protein Kinase Kinase/génétique , Désoxyglucose/déficit , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Glucose/déficit , Protein kinases/génétique , AMP-activated protein kinase kinases , Adénosine triphosphate/métabolisme , Protéines régulatrices de l'apoptose/génétique , Protéines régulatrices de l'apoptose/métabolisme , Protéine-5 associée à l'autophagie , Bécline-1 , Calcium-Calmodulin-Dependent Protein Kinase Kinase/métabolisme , Hypoxie cellulaire/effets des médicaments et des substances chimiques , Hypoxie cellulaire/génétique , Lignée cellulaire tumorale , Désoxyglucose/pharmacologie , Réticulum endoplasmique/effets des médicaments et des substances chimiques , Réticulum endoplasmique/métabolisme , Extracellular Signal-Regulated MAP Kinases/génétique , Extracellular Signal-Regulated MAP Kinases/métabolisme , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Glucose/pharmacologie , Humains , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Protéines associées aux microtubules/génétique , Protéines associées aux microtubules/métabolisme , Phosphatidylinositol 3-kinases/génétique , Phosphatidylinositol 3-kinases/métabolisme , Protein kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/métabolisme , Espèces réactives de l'oxygène , Transduction du signal/effets des médicaments et des substances chimiques , Tunicamycine/pharmacologie
19.
Cancer Chemother Pharmacol ; 67(4): 899-910, 2011 Apr.
Article de Anglais | MEDLINE | ID: mdl-20593179

RÉSUMÉ

PURPOSE: The glucose analog and glycolytic inhibitor 2-deoxy-D-glucose (2-DG), which is currently under clinical evaluation for targeting cancer cells, not only blocks glycolysis thereby reducing cellular ATP, but also interferes with N-linked glycosylation, which leads to endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). Both bioenergetic challenge and ER stress have been shown to activate autophagy, a bulk cellular degradation process that plays either a pro- or anti-death role. Here, we investigate which pathway 2-DG interferes with that activates autophagy and the role of this process in modulating 2-DG-induced toxicity. METHODS: Pancreatic cancer cell line 1420, melanoma cell line MDA-MB-435 and breast cancer cell line SKBR3 were used to investigate the relationship between induction by 2-DG treatment of ER stress/UPR, ATP reduction and activation of autophagy. ER stress/UPR (Grp78 and CHOP) and autophagy (LC3B II) markers were assayed by immunoblotting, while ATP levels were measured using the CellTiter-Glo Luminescent Cell Viability Assay. Autophagy was also measured by immunofluorescence utilizing LC3B antibody. Cell death was detected with a Vi-Cell cell viability analyzer using trypan blue exclusion. RESULTS: In the three different cancer cell lines described earlier, we find that 2-DG upregulates autophagy, increases ER stress and lowers ATP levels. Addition of exogenous mannose reverses 2-DG-induced autophagy and ER stress but does not recover the lowered levels of ATP. Moreover, under anaerobic conditions where 2-DG severely depletes ATP, autophagy is diminished rather than activated, which correlates with lowered levels of the ER stress marker Grp78. Additionally, when autophagy is blocked by siRNA, cell sensitivity to 2-DG is increased corresponding with upregulation of ER stress-mediated apoptosis. Similar increased toxicity is observed with 3-methyladenine, a known autophagy inhibitor. In contrast, rapamycin which enhances autophagy reduces 2-DG-induced toxicity. CONCLUSIONS: Overall, these results indicate that the major mechanism by which 2-DG stimulates autophagy is through ER stress/UPR and not by lowering ATP levels. Furthermore, autophagy plays a protective role against 2-DG-elicited cell death apparently by relieving ER stress. These data suggest that combining autophagy inhibitors with 2-DG may be useful clinically.


Sujet(s)
Antimétabolites/pharmacologie , Autophagie/effets des médicaments et des substances chimiques , Désoxyglucose/pharmacologie , Réticulum endoplasmique/effets des médicaments et des substances chimiques , Adénosine triphosphate/métabolisme , Apoptose/effets des médicaments et des substances chimiques , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/anatomopathologie , Lignée cellulaire tumorale , Survie cellulaire/effets des médicaments et des substances chimiques , Réticulum endoplasmique/métabolisme , Chaperonne BiP du réticulum endoplasmique , Femelle , Technique d'immunofluorescence , Humains , Mélanome/traitement médicamenteux , Mélanome/anatomopathologie , Tumeurs du pancréas/traitement médicamenteux , Tumeurs du pancréas/anatomopathologie , Réponse aux protéines mal repliées/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...