Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Clin Exp Hypertens ; 46(1): 2366270, 2024 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-38864268

RÉSUMÉ

OBJECTIVE: To elucidate the underlying mechanism by which the proliferation and migration abilities of human umbilical cord mesenchymal stem cells (hUC-MSCs) determine their therapeutic efficacy in rheumatoid arthritis treatment. METHODS: The DBA/1J mice were utilized to establish a collagen-induced RA (CIA) mouse model and to validate the therapeutic efficacy of hUC-MSCs transfected with CD151 siRNA. RNA-seq, QT-PCR and western blotting were utilized to evaluate the mRNA and protein levels of the PI3K/AKT pathway, respectively. RESULTS: IFN-γ significantly enhanced the proliferation and migration abilities of hUC-MSCs, up-regulating the expression of CD151, a gene related to cell proliferation and migration. Effective inhibition of this effect was achieved through CD151 siRNA treatment. However, IFN-γ did not affect hUC-MSCs differentiation or changes in cell surface markers. Additionally, transplantation of CD151-interfered hUC-MSCs (siRNA-CD151-hUC-MSCs) resulted in decreased colonization in the toes of CIA mice and worse therapeutic effects compared to empty vector treatment (siRNA-NC-hUC-MSCs). CONCLUSION: IFN-γ facilitates the proliferation and migration of hUC-MSCs through the CD151/PI3K/AKT pathway. The therapeutic efficacy of siRNA-CD151-hUC-MSCs was found to be inferior to that of siRNA-NC-hUC-MSCs.


Sujet(s)
Polyarthrite rhumatoïde , Mouvement cellulaire , Prolifération cellulaire , Transplantation de cellules souches mésenchymateuses , Cellules souches mésenchymateuses , Souris de lignée DBA , Phosphatidylinositol 3-kinases , Protéines proto-oncogènes c-akt , Transduction du signal , Animaux , Polyarthrite rhumatoïde/thérapie , Polyarthrite rhumatoïde/métabolisme , Souris , Cellules souches mésenchymateuses/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Transplantation de cellules souches mésenchymateuses/méthodes , Phosphatidylinositol 3-kinases/métabolisme , Humains , Interféron gamma/métabolisme , Cordon ombilical/cytologie , Arthrite expérimentale/thérapie , Arthrite expérimentale/métabolisme , Mâle
2.
Org Lett ; 22(20): 7976-7980, 2020 10 16.
Article de Anglais | MEDLINE | ID: mdl-32997943

RÉSUMÉ

This study presents an efficient strategy for constructing 1,2-difunctionalized quinoline derivatives via the multicomponent cascade coupling of N-heteroaromatics with alkyl halides and different terminal alkynes. This reaction was achieved through sequential functionalization at the one- and two-positions of quinolines, which displayed a broad substrate scope, environmental friendliness, excellent functional group tolerance, high atom efficiency, and chemoselectivity. The multicomponent coupling involved the abnormal construction of new C-N, C═C, and C═O bonds in one pot. The applicability of this method was further demonstrated by the late-stage functionalization of complex drug molecules under the established conditions.

3.
Org Lett ; 22(21): 8291-8295, 2020 11 06.
Article de Anglais | MEDLINE | ID: mdl-32915584

RÉSUMÉ

We herein describe a practical direct amination of phenols through a palladium-catalyzed hydrogen-transfer-mediated activation method to synthesize the secondary and tertiary amines. In this conversion, environmentally friendly water and inexpensive ammonium formate were used as solvent and reductant, respectively. A range of amines, including aliphatic amines, aniline, secondary amines, and diamines, could be coupled effectively by this method to achieve mono/dual amination and cyclization of phenols. This study not only provides a green and mild strategy for the synthesis of secondary and tertiary naphthylamines but also expands the synthesis of chloroquine in organic chemistry.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE