Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 221
Filtrer
1.
Shock ; 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38904464

RÉSUMÉ

ABSTRACT: Diabetes and myocardial ischemia reperfusion (MIR) injury are characterized by oxidative stress, inflammation, autophagy disorders and cardiac contractile dysfunction. Klotho and SIRT1 regulate the level of oxidative stress to participate in the regulation of many physiological functions such as cell survival, ageing, apoptosis, autophagy, mitochondrial biogenesis and inflammation. We hypothesized that the activation of Klotho/SIRT1 signaling pathway could attenuate MIR in diabetic rats. Type 1 diabetes and MIR injury model were established to examine this hypothesis in vivo. Primary rat cardiomyocytes and H9c2 cells were exposed to high glucose conditions and hypoxia/reoxygenation (H/R) insult in vitro. Haemodynamic parameters of heart function, myocardial infarct size, oxidative stress, markers of MIR injury or cell viability, and the mRNA and protein expression of Klotho and SIRT1 were measured. There was lower expression of Klotho and SIRT1 in diabetic MIR hearts than in nondiabetic rats, as well as significantly increased oxidative stress levels and decreased autophagy levels. Recombinant Klotho (rKlotho) protein and the SIRT1 agonist SRT1720 could significantly attenuate MIR injury in diabetes by activating Klotho/SIRT1 signaling pathway to reduce oxidative stress and restore autophagy levels. These findings suggest that the Klotho/SIRT1 pathway plays an important role in MIR injury in diabetic rats, and rKlotho protein and agonist SRT1720 have therapeutic potential for alleviating diabetic myocardial IR injury by activating Klotho/SIRT1 to reduce oxidative stress and restore autophagy levels.

2.
Neurochem Int ; 178: 105788, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38843953

RÉSUMÉ

Neuroinflammation is a major driver of postoperative cognitive dysfunction (POCD). The cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) signaling is a prominent alarming device for aberrant double-stranded DNA (dsDNA) that has emerged as a key mediator of neuroinflammation in cognitive-related diseases. However, the role of the cGAS-STING pathway in the pathogenesis of POCD remains unclear. A POCD model was developed in male C57BL/6J mice by laparotomy under isoflurane (Iso) anesthesia. The cGAS inhibitor RU.521 and caspase-3 agonist Raptinal were delivered by intraperitoneal administration. BV2 cells were exposed to Iso and lipopolysaccharide (LPS) in the absence or presence of RU.521, and then cocultured with HT22 cells in the absence or presence of Raptinal. Cognitive function was assessed using the Morris water maze test and novel object recognition test. Immunofluorescence assays were used to observe the colocalization of dsDNA and cGAS. The downstream proteins and pro-inflammatory cytokines were detected using the Western blot and enzyme-linked immunosorbent assay (ELISA). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to assess the degree of cell death in the hippocampus following anesthesia/surgery treatment. Isoflurane/laparotomy and Iso + LPS significantly augmented the levels of cGAS in the hippocampus and BV2 cells, accompanied by mislocalized dsDNA accumulation in the cytoplasm. RU.521 alleviated cognitive impairment, diminished the levels of 2'3'-cGAMP, cGAS, STING, phosphorylated NF-κB p65 and NF-κB-pertinent pro-inflammatory cytokines (TNFα and IL-6), and repressed pyroptosis-associated elements containing cleaved caspase-3, N-GSDME, IL-1ß and IL-18. These phenotypes could be rescued by Raptinal in vivo and in vitro. These findings suggest that pharmacological inhibition of cGAS mitigates neuroinflammatory burden of POCD by dampening caspase-3/GSDME-dependent pyroptosis, providing a potential therapeutic strategy for POCD.

3.
J Cancer Res Clin Oncol ; 150(6): 316, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38910204

RÉSUMÉ

BACKGROUND: Liver cancer (LC) is a prevalent malignancy and a leading cause of cancer-related mortality worldwide. Extensive research has been conducted to enhance patient outcomes and develop effective prevention strategies, ranging from molecular mechanisms to clinical interventions. Single-cell sequencing, as a novel bioanalysis technology, has significantly contributed to the understanding of the global cognition and dynamic changes in liver cancer. However, there is a lack of bibliometric analysis in this specific research area. Therefore, the objective of this study is to provide a comprehensive overview of the knowledge structure and research hotspots in the field of single-cell sequencing in liver cancer research through the use of bibliometrics. METHOD: Publications related to the application of single-cell sequencing technology to liver cancer research as of December 31, 2023, were searched on the web of science core collection (WoSCC) database. VOSviewers, CiteSpace, and R package "bibliometrix" were used to conduct this bibliometric analysis. RESULTS: A total of 331 publications from 34 countries, primarily led by China and the United States, were included in this study. The research focuses on the application of single cell sequencing technology to liver cancer, and the number of related publications has been increasing year by year. The main research institutions involved in this field are Fudan University, Sun Yat-Sen University, and the Chinese Academy of Sciences. Frontiers in Immunology and Nature Communications is the most popular journal in this field, while Cell is the most frequently co-cited journal. These publications are authored by 2799 individuals, with Fan Jia and Zhou Jian having the most published papers, and Llovet Jm being the most frequently co-cited author. The use of single cell sequencing to explore the immune microenvironment of liver cancer, as well as its implications in immunotherapy and chemotherapy, remains the central focus of this field. The emerging research hotspots are characterized by keywords such as 'Gene-Expression', 'Prognosis', 'Tumor Heterogeneity', 'Immunoregulation', and 'Tumor Immune Microenvironment'. CONCLUSION: This is the first bibliometric study that comprehensively summarizes the research trends and developments on the application of single cell sequencing in liver cancer. The study identifies recent research frontiers and hot directions, providing a valuable reference for researchers exploring the landscape of liver cancer, understanding the composition of the immune microenvironment, and utilizing single-cell sequencing technology to guide and enhance the prognosis of liver cancer patients.


Sujet(s)
Bibliométrie , Tumeurs du foie , Analyse sur cellule unique , Humains , Tumeurs du foie/immunologie , Tumeurs du foie/génétique , Analyse sur cellule unique/méthodes
4.
Mol Cell Biochem ; 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38717685

RÉSUMÉ

Despite enormous advances in the treatment of cardiovascular diseases, including I/R injury and heart failure, heart diseases remain a leading cause of mortality worldwide. Inositol-requiring enzyme 1 (IRE1) is an evolutionarily conserved sensor endoplasmic reticulum (ER) transmembrane protein that senses ER stress. It manages ER stress induced by the accumulation of unfolded/misfolded proteins via the unfolded protein response (UPR). However, if the stress still persists, the UPR pathways are activated and induce cell death. Emerging evidence shows that, beyond the UPR, IRE1 participates in the progression of cardiovascular diseases by regulating inflammation levels, immunity, and lipid metabolism. Here, we summarize the recent findings and discuss the potential therapeutic effects of IRE1 in the treatment of cardiovascular diseases.

5.
Front Med (Lausanne) ; 11: 1360508, 2024.
Article de Anglais | MEDLINE | ID: mdl-38716419

RÉSUMÉ

Objective: Ciprofol (also known as cipepofol and HSK3486), is a compound similar to propofol in chemical structure and hypnotic effect. Herein we evaluated the efficacy and safety of ciprofol for sedation in outpatient gynecological procedures. Methods: This phase III multicenter randomized trial with a non-inferiority design was conducted in nine tertiary hospitals. We enrolled 135 women aged 18-65 years who were scheduled for ambulatory gynecological procedures. Patients were randomly assigned to receive either ciprofol (0.4 mg/kg for induction and 0.2 mg/kg for maintenance) or propofol (2.0 mg/kg for induction and 1.0 mg/kg for maintenance) sedation in a 2:1 ratio. Patients and investigators for data collection and outcome assessment were blinded to study group assignments. The primary outcome was the success rate of sedation, defined as completion of procedure without remedial anesthetics. The non-inferiority margin was set at -8%. Secondary outcomes included time to successful induction, time to full awake, time to meet discharge criteria, and satisfaction with sedation assessed by patients and doctors. We also monitored occurrence of adverse events and injection pain. Results: A total of 135 patients were enrolled; 134 patients (90 patients received ciprofol sedation and 44 patients propofol sedation) were included in final intention-to-treat analysis. The success rates were both 100% in the two groups (rate difference, 0.0%; 95% CI, -4.1 to 8.0%), i.e., ciprofol was non-inferior to propofol. When compared with propofol sedation, patients given ciprofol required more time to reach successful induction (median difference [MD], 2 s; 95% CI, 1 to 7; p < 0.001), and required more time to reach full awake (MD, 2.3 min; 95% CI, 1.4 to 3.1; p < 0.001) and discharge criteria (MD, 2.3 min; 95% CI, 1.5 to 3.2; p < 0.001). Fewer patients in the ciprofol group were dissatisfied with sedation (relative risk, 0.21; 95% CI, 0.06 to 0.77; p = 0.024). Patients given ciprofol sedation had lower incidences of treat-emergent adverse events (34.4% [31/90] vs. 79.5% [35/44]; p < 0.001) and injection pain (6.7% [6/90] vs. 61.4% [27/44]; p < 0.001). Conclusion: Ciprofol for sedation in ambulatory gynecological procedures was non-inferior to propofol, with less adverse events and injection pain. Clinical trial registration: ClinicalTrials.gov, identifier NCT04958746.

6.
J Pain Res ; 17: 1881-1901, 2024.
Article de Anglais | MEDLINE | ID: mdl-38803692

RÉSUMÉ

Background: In traditional Chinese medicine, Ligusticum chuanxiong Hort. (LCH) is used to treat neuropathic pain (NP). This study was performed to investigate the underlying pharmacological mechanisms. Methods: The main components of the LCH were obtained from the TCMSP database. The targets of the active components were obtained using the Swiss Target Prediction database and HERB database. The NP-related genes were obtained from the CTD database and GeneCard database. Protein-protein interaction (PPI) network was constructed using the STRING platform and Cytoscape 3.9.0 software. GO and KEGG enrichment analyses were performed using the DAVID database. Interactions between the key components and hub target proteins were verified using molecular docking and molecular dynamics simulation. In addition, microglial cell line HMC3 was induced to polarize to the M1 phenotype using 100 ng/mL lipopolysaccharide (LPS). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and enzyme-linked immunosorbent assays were used to detect the expression levels of M1 markers and inflammatory factors, respectively. Results: Seven LCH active components of LCH were identified, corresponding to 387 target genes. 2019 NP-related genes were obtained, and a total of 174 NP-related genes were identified as target genes that could be modulated by LCH. Beta-sitosterol, senkyunone, wallichilide, myricanone, and mandenol were considered as the key components of LCH in the treatment of NP. SRC, BCL2, AKT1, HIF1A and HSP90AA1 were identified as the hub target proteins. GO analysis showed that 328 biological processes, 61 cell components, and 85 molecular functions were likely modulated by the components of LCH, and KEGG enrichment analysis showed that 132 signaling pathways were likely modulated by the components of LCH. Beta-sitosterol, senkyunone, wallichilide, myricanone, and mandenol showed good binding activity with hub target proteins including SRC, BCL2, AKT1, and HSP90AA1. In addition, beta-sitosterol inhibited LPS-induced M1 polarization in HMC3 in vitro. Conclusion: This study provides a theoretical basis for the application of LCH in the treatment of NP through multicomponent, multitarget, and multiple pathways.

7.
Cell Commun Signal ; 22(1): 252, 2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38698453

RÉSUMÉ

BACKGROUND: Ischemic postconditioning (IPostC) has been reported as a promising method for protecting against myocardial ischemia-reperfusion (MI/R) injury. Our previous study found that the infarct-limiting effect of IPostC is abolished in the heart of diabetes whose cardiac expression of DJ-1 (also called PARK7, Parkinsonism associated deglycase) is reduced. However, the role and in particular the underlying mechanism of DJ-1 in the loss of sensitivity to IPostC-induced cardioprotection in diabetic hearts remains unclear. METHODS: Streptozotocin-induced type 1 diabetic rats were subjected to MI/R injury by occluding the left anterior descending artery (LAD) and followed by reperfusion. IPostC was induced by three cycles of 10s of reperfusion and ischemia at the onset of reperfusion. AAV9-CMV-DJ-1, AAV9-CMV-C106S-DJ-1 or AAV9-DJ-1 siRNA were injected via tail vein to either over-express or knock-down DJ-1 three weeks before inducing MI/R. RESULTS: Diabetic rats subjected to MI/R exhibited larger infarct area, more severe oxidative injury concomitant with significantly reduced cardiac DJ-1 expression and increased PTEN expression as compared to non-diabetic rats. AAV9-mediated cardiac DJ-1 overexpression, but not the cardiac overexpression of DJ-1 mutant C106S, restored IPostC-induced cardioprotection and this effect was accompanied by increased cytoplasmic DJ-1 translocation toward nuclear and mitochondrial, reduced PTEN expression, and increased Nrf-2/HO-1 transcription. Our further study showed that AAV9-mediated targeted DJ-1 gene knockdown aggravated MI/R injury in diabetic hearts, and this exacerbation of MI/R injury was partially reversed by IPostC in the presence of PTEN inhibition or Nrf-2 activation. CONCLUSIONS: These findings suggest that DJ-1 preserves the cardioprotective effect of IPostC against MI/R injury in diabetic rats through nuclear and mitochondrial DJ-1 translocation and that inhibition of cardiac PTEN and activation of Nrf-2/HO-1 may represent the major downstream mechanisms whereby DJ-1 preserves the cardioprotective effect of IPostC in diabetes.


Sujet(s)
Diabète expérimental , Postconditionnement ischémique , Lésion de reperfusion myocardique , Phosphohydrolase PTEN , Protein deglycase DJ-1 , Rat Sprague-Dawley , Animaux , Protein deglycase DJ-1/métabolisme , Protein deglycase DJ-1/génétique , Phosphohydrolase PTEN/métabolisme , Phosphohydrolase PTEN/génétique , Diabète expérimental/métabolisme , Mâle , Rats , Lésion de reperfusion myocardique/métabolisme , Lésion de reperfusion myocardique/anatomopathologie , Lésion de reperfusion myocardique/génétique , Facteur-2 apparenté à NF-E2/métabolisme , Facteur-2 apparenté à NF-E2/génétique , Diabète de type 1/métabolisme , Diabète de type 1/complications , Transport des protéines , Streptozocine , Infarctus du myocarde/métabolisme , Infarctus du myocarde/anatomopathologie
8.
Antioxidants (Basel) ; 13(5)2024 May 06.
Article de Anglais | MEDLINE | ID: mdl-38790676

RÉSUMÉ

Protein posttranslational modifications are important factors that mediate the fine regulation of signaling molecules. O-linked ß-N-acetylglucosamine-modification (O-GlcNAcylation) is a monosaccharide modification on N-acetylglucosamine linked to the hydroxyl terminus of serine and threonine of proteins. O-GlcNAcylation is responsive to cellular stress as a reversible and posttranslational modification of nuclear, mitochondrial and cytoplasmic proteins. Mitochondrial proteins are the main targets of O-GlcNAcylation and O-GlcNAcylation is a key regulator of mitochondrial homeostasis by directly regulating the mitochondrial proteome or protein activity and function. Disruption of O-GlcNAcylation is closely related to mitochondrial dysfunction. More importantly, the O-GlcNAcylation of cardiac proteins has been proven to be protective or harmful to cardiac function. Mitochondrial homeostasis is crucial for cardiac contractile function and myocardial cell metabolism, and the imbalance of mitochondrial homeostasis plays a crucial role in the pathogenesis of cardiovascular diseases (CVDs). In this review, we will focus on the interactions between protein O-GlcNAcylation and mitochondrial homeostasis and provide insights on the role of mitochondrial protein O-GlcNAcylation in CVDs.

9.
Front Med (Lausanne) ; 11: 1359878, 2024.
Article de Anglais | MEDLINE | ID: mdl-38681056

RÉSUMÉ

Background: There is still a controversy about the superiority of liposomal bupivacaine (LB) over traditional local anesthetics in postoperative analgesia after thoracic surgery. This study aims to determine the effect of LB versus bupivacaine hydrochloride (HCl) for preoperative ultrasound-guided erector spinae plane block (ESPB) on postoperative acute and chronic pain in patients undergoing video-assisted thoracoscopic lung surgery. Methods: This multicenter, randomized, double-blind, controlled trial will include 272 adult patients scheduled for elective video-assisted thoracoscopic lung surgery. Patients will be randomly assigned, 1:1 and stratified by site, to the liposomal bupivacaine (LB) group or the bupivacaine (BUPI) HCl group. All patients will receive ultrasound-guided ESPB with either LB or bupivacaine HCl before surgery and patient-controlled intravenous analgesia (PCIA) as rescue analgesia after surgery. The numeric rating scale (NRS) score will be assessed after surgery. The primary outcome is the area under the curve of pain scores at rest for 0-72 h postoperatively. The secondary outcomes include the total amount of opioid rescue analgesics through 0-72 h postoperatively, time to the first press on the PCIA device as rescue analgesia, the area under the curve of pain scores on activity for 0-72 h postoperatively, NRS scores at rest and on activity at different time points during the 0-72 h postoperative period, Quality of Recovery 15 scores at 72 h after surgery, and NRS scores on activity on postsurgical day 14 and postsurgical 3 months. Adverse events after the surgery are followed up to the postsurgical day 7, including postoperative nausea and vomiting, fever, constipation, dizziness, headache, insomnia, itching, prolonged chest tube leakage, new-onset atrial fibrillation, severe ventricular arrhythmia, deep venous thrombosis, pulmonary embolism, pulmonary atelectasis, cardiac arrest, ileus, urinary retention, chylothorax, pneumothorax, and organ failure. Analyzes will be performed first according to the intention to treat principle and second with the per-protocol analysis. Discussion: We hypothesize that LB for preoperative ultrasound-guided ESPB would be more effective than bupivacaine HCl in reducing postoperative pain in video-assisted thoracoscopic lung surgery. Our results will contribute to the optimization of postoperative analgesia regimens for patients undergoing video-assisted thoracoscopic lung surgery.Clinical trial registration:http://www.chictr.org.cn, identifier ChiCTR2300074852.

10.
Heliyon ; 10(7): e28738, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38560247

RÉSUMÉ

Background: Given that the circadian rhythm is intricately linked to cardiovascular physiological functions, the objective of this investigation was to employ bibliometric visualization analysis in order to scrutinize the trends, hotspots, and prospects of the circadian rhythm and cardiovascular disease (CVD) over the past two decades. Methods: A thorough exploration of the literature related to the circadian rhythm and CVD was conducted via the Web of Science Core Collection database spanning the years 2002-2022. Advanced software tools, including citespace and VOSviewer, were employed to carry out a comprehensive analysis of the co-occurrence and collaborative relationships among countries, institutions, journals, references, and keywords found in this literature. Furthermore, correlation mapping was executed to provide a visual representation of the data. Results: The present study encompassed a total of 3399 published works, comprising of 2691 articles and 708 reviews. The publications under scrutiny were primarily derived from countries such as the United States, Japan, and China. The most prominent research institutions were found to be the University of Vigo, University of Minnesota, and Harvard University. Notably, the journal Chronobiology International, alongside its co-cited publications, had the most substantial contribution to the research in this field. Following an exhaustive analysis, the most frequently observed keywords were identified as circadian rhythm, blood pressure, hypertension, heart rate, heart rate variability, and melatonin. Furthermore, a nascent analysis indicated that future research might gravitate towards topics such as inflammation, metabolism, oxidative stress, and autophagy, thereby indicating new directions for investigation. Conclusion: This analysis represents the first instance of bibliometric scrutiny pertaining to circadian rhythm and its correlation with cardiovascular disease (CVD) through the use of visualization software. Notably, this study has succeeded in highlighting the recent research frontiers and prominent trajectories in this field, thereby providing a valuable contribution to the literature.

11.
Int Immunopharmacol ; 132: 112002, 2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38608473

RÉSUMÉ

BACKGROUND: Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. METHODS: The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RESULTS: RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. CONCLUSION: Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.


Sujet(s)
Acides gras , Fibrose , Rein , Souris de lignée C57BL , Souris knockout , Oxydoréduction , Lésion d'ischémie-reperfusion , Transduction du signal , Sirtuine-1 , Facteur de transcription Sp1 , Animaux , Sirtuine-1/métabolisme , Sirtuine-1/génétique , Lésion d'ischémie-reperfusion/métabolisme , Lésion d'ischémie-reperfusion/anatomopathologie , Acides gras/métabolisme , Facteur de transcription Sp1/métabolisme , Facteur de transcription Sp1/génétique , Souris , Rein/anatomopathologie , Rein/métabolisme , Mâle , Atteinte rénale aigüe/métabolisme , Atteinte rénale aigüe/anatomopathologie , Atteinte rénale aigüe/génétique , Humains , Modèles animaux de maladie humaine
12.
Mol Neurobiol ; 2024 Jan 17.
Article de Anglais | MEDLINE | ID: mdl-38231323

RÉSUMÉ

Lactate is not only the energy substrate of neural cells, but also an important signal molecule in brain. In modern societies, disturbed circadian rhythms pose a global challenge. Therefore, exploring the influence of circadian period on lactate and its metabolic kinetics is essential for the advancement of neuroscientific research. In the present study, the different groups of mice (L: 8:00 a.m.; D: 20:00 p.m.; SD: 20:00 p.m. with 12 h acute sleep deprivation) were infused with [3-13C] lactate through the lateral tail vein for a duration of 2 min. After 30-min lactate metabolism, the animals were euthanized and the tissues of brain and liver were obtained and extracted, and then, the [1H-13C] NMR technology was employed to investigate the kinetic information of lactate metabolism in different brain regions and liver to detect the enrichment of various metabolic kinetic information. Results revealed the fluctuating lactate concentrations in the brain throughout the day, with lower levels during light periods and higher levels during dark periods. Most metabolites displayed strong sensitivity to circadian rhythm, exhibiting significant day-night variations. Conversely, only a few metabolites showed changes after acute sleep deprivation, primarily in the temporal brain region. Interestingly, in contrast to brain lactate metabolism, liver lactate metabolism exhibited a significant increase following acute sleep deprivation. This study explored the kinetics of lactate metabolism, hinted at potential clinical implications for disorders involving circadian rhythm disturbances, and providing a new research basis for clinical exploration of brain and liver lactate metabolism.

13.
Sci Rep ; 14(1): 2328, 2024 01 28.
Article de Anglais | MEDLINE | ID: mdl-38282163

RÉSUMÉ

Inulin, as a prebiotic, could modulate the gut microbiota. Burn injury leads to gut microbiota disorders and skeletal muscle catabolism. Therefore, whether inulin can improve burn-induced muscle atrophy by regulating microbiota disorders remains unknown. This study aimed to clarify that inulin intake alleviates gut microbiota disorders and skeletal muscle atrophy in burned rats. Rats were divided into the sham group, burn group, prebiotic inulin intervention group, and pseudo-aseptic validation group. A 30% total body surface area (TBSA) third-degree burn wound on dorsal skin was evaluated in all groups except the sham group. Animals in the intervention group received 7 g/L inulin. Animals in the validation group received antibiotic cocktail and inulin treatment. In our study inulin intervention could significantly alleviate the burn-induced skeletal muscle mass decrease and skeletal myoblast cell apoptosis. Inulin intake increased the abundances of Firmicutes and Actinobacteria but decreased the abundance of Proteobacteria. The biosynthesis of amino acids was the most meaningful metabolic pathway distinguishing the inulin intervention group from the burn group, and further mechanistic studies have shown that inulin can promote the phosphorylation of the myogenesis-related proteins PI3K, AKT and P70S6K and activate PI3K/AKT signaling for protein synthesis. In conclusion, inulin alleviated burn induced muscle atrophy through PI3K/AKT signaling and regulated gut microbiota dysbiosis.


Sujet(s)
Brûlures , Microbiome gastro-intestinal , Rats , Animaux , Inuline , Protéines proto-oncogènes c-akt/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Muscles squelettiques/métabolisme , Amyotrophie/traitement médicamenteux , Amyotrophie/étiologie , Amyotrophie/métabolisme , Compléments alimentaires , Brûlures/complications , Brûlures/traitement médicamenteux , Brûlures/métabolisme
14.
Cell Signal ; 114: 111006, 2024 02.
Article de Anglais | MEDLINE | ID: mdl-38086436

RÉSUMÉ

Diabetes is a widespread disease that threatens the life and health of human beings, and diabetic cardiomyopathy (DCM) is one of the major complications of diabetic patients. The pathological mechanisms of DCM are complex, including inflammation, endoplasmic reticulum stress, and oxidative stress that have been reported previously. Although recent studies suggested that ferroptosis is also involved in the progression of DCM, the exact mechanism remains unclear. Rev-erbα cardiac conditional knockout mice were generated and type 2 diabetes were induced by high fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ) in in vivo experiments. In parallel, our in vitro experiments entailed the introduction of elevated levels of glucose (HG) and palmitic acid (PA) to induce glycolipid toxicity in H9c2 cardiomyocytes. Further deterioration of cardiac function was detected by echocardiography after the clock gene rev-erbα was knocked out. This was accompanied by significant elevations in markers of inflammation, myocardial fibrosis, and oxidative stress. In addition, iron content, transmission electron microscopy (TEM), and RT-PCR assays confirmed significantly increased levels of ferroptosis in rev-erbα-deficient DCM. Intriguingly, Co-Immunoprecipitation (Co-IP) data uncovered an interaction between rev-erbα and nuclear factor E2-related factor 2 (NRF2) in diabetic myocardial tissues. It is worth highlighting that ferroptosis within cardiomyocytes witnessed significant mitigation upon the administration of sulforaphane (SFN), an NRF2 agonist, to HG + PA-incubated H9c2 cells. Our study demonstrates for the first time that knockdown of the clock gene rev-erbα exacerbates myocardial injury and ferroptosis in type 2 diabetic mice, which can be reversed by activating NRF2.


Sujet(s)
Diabète expérimental , Diabète de type 2 , Cardiomyopathies diabétiques , Ferroptose , Animaux , Humains , Souris , Diabète expérimental/complications , Diabète expérimental/génétique , Diabète de type 2/complications , Cardiomyopathies diabétiques/traitement médicamenteux , Inflammation , Facteur-2 apparenté à NF-E2
15.
Diabetes Obes Metab ; 26(2): 732-744, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37961034

RÉSUMÉ

AIMS: To investigate the role of FOXO1 in STAT3 activation and mitochondrial quality control in the diabetic heart. METHODS: Type 1 diabetes mellitus (T1DM) was induced in rats by a single intraperitoneal injection of 60 mg · kg-1 streptozotocin (STZ), while type 2 diabetes mellitus (T2DM) was induced in rats with a high-fat diet through intraperitoneal injection of 35 mg · kg-1 STZ. Primary neonatal mouse cardiomyocytes and H9c2 cells were exposed to low glucose (5.5 mM) or high glucose (HG; 30 mM) with or without treatment with the FOXO1 inhibitor AS1842856 (1 µM) for 24 hours. In addition, the diabetic db/db mice (aged 8 weeks) and sex- and age-matched non-diabetic db/+ mice were treated with vehicle or AS1842856 by oral gavage for 15 days at a dose of 5 mg · kg-1 · d-1 . RESULTS: Rats with T1DM or T2DM had excessive cardiac FOXO1 activation, accompanied by decreased STAT3 activation. Immunofluorescence and immunoprecipitation analysis showed colocalization and association of FOXO1 and STAT3 under basal conditions in isolated cardiomyocytes. Selective inhibition of FOXO1 activation by AS1842856 or FOXO1 siRNA transfection improved STAT3 activation, mitophagy and mitochondrial fusion, and decreased mitochondrial fission in isolated cardiomyocytes exposed to HG. Transfection with STAT3 siRNA further reduced mitophagy, mitochondrial fusion and increased mitochondrial fission in HG-treated cardiomyocytes. AS1842856 alleviated cardiac dysfunction, pathological damage and improved STAT3 activation, mitophagy and mitochondrial dynamics in diabetic db/db mice. Additionally, AS1842856 improved mitochondrial function indicated by increased mitochondrial membrane potential and adenosine triphosphate production and decreased mitochondrial reactive oxygen species production in isolated cardiomyocytes exposed to HG. CONCLUSIONS: Excessive FOXO1 activation during diabetes reduces STAT3 activation, with subsequent impairment of mitochondrial quality, ultimately promoting the development of diabetic cardiomyopathy.


Sujet(s)
Diabète de type 1 , Diabète de type 2 , Cardiomyopathies diabétiques , Animaux , Souris , Rats , Diabète de type 1/complications , Diabète de type 1/métabolisme , Diabète de type 2/complications , Diabète de type 2/métabolisme , Glucose/métabolisme , Mitochondries , Myocytes cardiaques/métabolisme , Petit ARN interférent/usage thérapeutique
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166944, 2024 03.
Article de Anglais | MEDLINE | ID: mdl-37952827

RÉSUMÉ

Sema4D (CD100) is closely related to pathological and physiological processes, including tumor growth, angiogenesis and cardiac development. Nevertheless, the role and mechanism of Sema4D in cardiac hypertrophy are still unclear to date. To assess the impact of Sema4D on pathological cardiac hypertrophy, TAC surgery was performed on C57BL/6 mice which were transfected with AAV9-mSema4D-shRNA or AAV9-mSema4D adeno-associated virus by tail vein injection. Our results indicated that Sema4D knockdown mitigated cardiac hypertrophy, fibrosis and dysfunction when exposed to pressure overload, and Sema4D downregulation markedly inhibited cardiomyocyte hypertrophy induced by angiotensin II. Meanwhile, Sema4D overexpression had the opposite effect in vitro and in vivo. Furthermore, analysis of signaling pathways showed that Sema4D activated the MAPK pathway during cardiac hypertrophy induced by pressure overload, and the pharmacological mitogen-activated protein kinase kinase 1/2 inhibitor U0126 almost completely reversed Sema4D overexpression-induced deteriorated phenotype, resulting in improved cardiac function. Further research indicated that myocardial hypertrophy induced by Sema4D was closely related to the expression of the pyroptosis-related proteins PP65, NLRP3, caspase-1, ASC, GSDMD, IL-18 and IL-1ß. In conclusion, our study demonstrated that Sema4D regulated the process of pathological myocardial hypertrophy through modulating MAPK/NF-κB/NLRP3 pathway, and Sema4D may be the promising interventional target of cardiac hypertrophy and heart failure.


Sujet(s)
Antigènes CD , Myocytes cardiaques , Facteur de transcription NF-kappa B , Sémaphorines , Animaux , Souris , Cardiomégalie/métabolisme , Souris de lignée C57BL , Myocytes cardiaques/métabolisme , Facteur de transcription NF-kappa B/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/génétique , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme
17.
Aging (Albany NY) ; 15(21): 12537-12550, 2023 11 09.
Article de Anglais | MEDLINE | ID: mdl-37950727

RÉSUMÉ

Chemotherapy-induced cognitive impairment (CICI) is a subject that requires critical solutions in neuroscience and oncology. However, its potential mechanism of action remains ambiguous. The aim of this study was to investigate the vital role of HuR in the neuroprotection of cyclosporin A (CsA) during methotrexate (MTX)-induced cognitive impairment. A series of Hu-antigen R (HuR) gain and loss experiments were used to examine cyclosporin A (CsA)-mediated translocation of HuR's ability to improve MTX-induced cognitive impairment through NCOA4-mediated ferritinophagy in vitro and in vivo. Obtained results show that the administration of CsA alleviated MTX-induced cognitive impairment in mice. The presence of MTX promoted the shuttling of HuR from the cytoplasm to the nucleus, whereas treatment with CsA increased cytoplasmic HuR expression levels and the levels of ferritinophagy-related proteins, such as NCOA4 and LC3II, compared to the MTX group. However, applying KH-3, an inhibitor of HuR, reversed CsA's impact on the expression of ferritinophagy-related proteins in the hippocampus and in vitro. Also, treatment with CsA attenuated microglial activation by altering Iba-1 expression and decreased TNF-α and IL-1ß levels in mice hippocampi. Moreover, KH-3 neutralized CsA's effects on the expression of both Iba-1 and HuR in vivo and in vitro. In summary, CsA was confirmed to have a neuroprotective role in CICI. Its possible underlying mechanisms may be involved in the translocation of HuR. Mediating the translocation of HuR during CICI could mitigate neruoinflammation and neuronal apoptosis via NCOA4-mediated ferritinophagy and, thus, alleviate cognitive impairment in mice with CICI.


Sujet(s)
Ciclosporine , Méthotrexate , Animaux , Souris , Apoptose , Cytoplasme , Facteurs de transcription
18.
Free Radic Biol Med ; 209(Pt 1): 135-150, 2023 11 20.
Article de Anglais | MEDLINE | ID: mdl-37805047

RÉSUMÉ

The complex progression of type-2 diabetes (T2DM) may result in increased susceptibility to myocardial ischemia-reperfusion (IR) injury. IR injuries in multiple organs involves ferroptosis. Recently, the clock gene Rev-erbα has aroused considerable interest as a novel therapeutic target for metabolic and ischemic heart diseases. Herein, we investigated the roles of Rev-erbα and ferroptosis in myocardial IR injury during T2DM and its potential mechanisms. A T2DM model, myocardial IR and a tissue-specific Rev-erbα-/- mouse in vivo were established, and a high-fat high glucose environment with hypoxia-reoxygenation (HFHG/HR) in H9c2 were also performed. After myocardial IR, glycolipid profiles, creatine kinase-MB, AI, and the expression of Rev-erbα and ferroptosis-related proteins were increased in diabetic rats with impaired cardiac function compared to non-diabetic rats, regardless of the time at which IR was induced. The ferroptosis inhibitor ferrostatin-1 decreased AI in diabetic rats given IR and LPO levels in cells treated with HFHG/HR, as well as the expression of Rev-erbα and ACSL4. The ferroptosis inducer erastin increased AI and LPO levels and ACSL4 expression. Treatment with the circadian regulator nobiletin and genetically targeting Rev-erbα via siRNA or CRISPR/Cas9 technology both protected against severe myocardial injury and decreased Rev-erbα and ACSL4 expression, compared to the respective controls. Taken together, these data suggest that ferroptosis is involved in the susceptibility to myocardial IR injury during T2DM, and that targeting Rev-erbα could alleviate myocardial IR injury by inhibiting ferroptosis.


Sujet(s)
Diabète expérimental , Diabète de type 2 , Ferroptose , Lésion de reperfusion myocardique , Rats , Souris , Animaux , Diabète de type 2/complications , Diabète de type 2/génétique , Diabète de type 2/métabolisme , Lésion de reperfusion myocardique/génétique , Lésion de reperfusion myocardique/métabolisme , Ferroptose/génétique , Diabète expérimental/génétique , Protéines
19.
Lancet Reg Health West Pac ; 37: 100787, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37693877

RÉSUMÉ

Background: The mortality risk related to anaesthesia in China remains poorly characterized. The objective of this study was to evaluate the anaesthesia-related mortality in terms of its incidence, changes, causes and preventability in Hubei, China, between 2017 and 2021 using a series of annual surveys. Methods: We prospectively collected information on patient, surgical, anaesthesia, and hospital characteristics for 9,391,669 anaesthesia procedures performed between 2017 and 2021 in 10 cities within Hubei Province, China. Anaesthesia-related death was defined as death that deemed to be entirely or partially attributable to anaesthesia, occurring within 24 h following anaesthesia administration. All fatalities were scrutinized consecutively to determine their root causes and preventability. The incidence and patterns of anaesthesia-related deaths were analysed from 2017 to 2021. A mixed-effects model with a Poisson link function was fitted to evaluate the city-level annual changes in risk-adjusted incidence of anaesthesia-related deaths. Findings: 600 cases of anaesthetic deaths occurred from 2017 to 2021, yielding an incidence of 6.4 per 100,000 anaesthesia procedures [95% confidence interval (95% CI): 5.9, 6.9], and most were preventable (71.3%). There was a significant decrease from 2017 to 2021, in the incidences of anaesthesia-related death across all patients, those with American Society of Anaesthesiologists physical status (ASAPS) ≥III, and those who had general anaesthesia, with a percentage reduction of 57.6%, 59.1%, and 55.9%, respectively. The risk-adjusted annual changes indicated significant downward trends for the incidence of anaesthetic mortality from 2017 to 2018, 2019, 2020, and 2021. For instance, the risk-adjusted annual changes for the anaesthetic mortality incidence from 2017 to 2021 was -2.5 (95% CI: -1.4, -4.7). Interpretation: In this large, comprehensive database study conducted in Central China, the anaesthesia-related death incidence was 6.4 per 100,000. Notably, the incidence of anaesthesia-related deaths decreased between 2017 and 2021. However, further in-depth analysis is needed to understand the extent to which these trends represent a change in patient safety. Funding: Innovation and optimization of perioperative respiratory system management strategy (Hubei Technological Innovation Special Fund, 2019ACA167).

20.
Biochem Pharmacol ; 217: 115816, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37748665

RÉSUMÉ

Sepsis-associated encephalopathy (SAE) is an acute brain dysfunction induced by systemic inflammation caused by sepsis and is one of the most common types of encephalopathy in intensive care units. Deteriorative neuroinflammation is closely related to the development of brain injury, which often transforms into common pathological manifestations in patients with severe sepsis. Therefore, taking necessary preventive and protective measures for potential brain injury and promptly reducing neuroinflammatory injury is necessary to improve the long-term prognoses of patients. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) can play a significant protective role in septic lung injury, but studies on its expression and role in neurological diseases are rare. In the present study, we found that TIPE2 can expressed in microglia and ameliorate brain injury caused by SAE by suppressing neuroinflammation. The RhoA/ROCK2 pathway is the central coordinator of tissue injury response, and the activation of RhoA participates in the lipopolysaccharide-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. The activation of RhoA and phosphorylation of NF-κB was enhanced after TIPE2 deficiency. Importantly, TIPE2 negatively regulates inflammatory responses in vivo and in vitro and plays a protective role in SAE by inhibiting the activation of RhoA/ROCK2-NF-κB signaling pathways. The ultimate aim of our proposed project is to provide a theoretical basis for the development of a novel strategy for the early prevention and therapy of SAE.


Sujet(s)
Lésions encéphaliques , Dysfonctionnement cognitif , Encéphalopathie associée au sepsis , Sepsie , Humains , Lésions encéphaliques/traitement médicamenteux , Dysfonctionnement cognitif/traitement médicamenteux , Dysfonctionnement cognitif/étiologie , Maladies neuro-inflammatoires , Facteur de transcription NF-kappa B/métabolisme , rho-Associated Kinases/métabolisme , Sepsie/complications , Encéphalopathie associée au sepsis/traitement médicamenteux , Transduction du signal/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...