Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Poult Sci ; 103(3): 103412, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38198912

RÉSUMÉ

Single nucleotide polymorphisms (SNPs) are valuable genetic markers that can provide insights into the genetic diversity and variation within chicken populations. In poultry breeding, SNP analysis is widely utilized to accelerate the selection of desirable traits, improving the efficiency and effectiveness of chicken breeding programs. In our previous research, we identified an association between LncEDCH1 and muscle development. To further investigate its specific mechanism, we conducted SNP detection and performed genotyping, linkage disequilibrium, and haplotype analysis. Our research findings indicate that 16 SNPs in the LncEDCH1. Among these SNPs, g.1703497 C>T and g.1704262 C>T were significantly associated with breast muscle weight percentage, g.1703497 C>T and g.1703613 T>C were significantly associated with leg weight percentage, and g.1703497 C>T, g.1703589 T>C, g.1703613 T>C, g.1703636 C>A, g.1703768 T>C, g.1704079 C>T, g.1704250 T>C, g.1704253 G>A were significantly associated with skin yellowness. Two haplotype blocks composed of 6 SNPs that were significantly associated with wing skin yellowness, breast skin yellowness, full-bore weight, and carcass weight percentage. Furthermore, through dual-luciferase reporter assays, biotin-coupled miRNA pull-down assays, 5-ethynyl-2'-deoxyuridine (EDU) assays, immunofluorescence, and quantitative real-time polymerase chain reaction (qPCR), it has been confirmed that miR-196-2-3p inhibits the expression of LncEDCH1 directly by binding to LncEDCH1 g.1703613T>C, thereby achieving indirect regulation of muscle development. These findings provide valuable molecular markers for chicken molecular breeding and broaden our understanding of the regulatory mechanisms.


Sujet(s)
Poulets , microARN , Animaux , Poulets/génétique , Phénotype , Dosage biologique/médecine vétérinaire , Haplotypes , microARN/génétique
2.
Animals (Basel) ; 12(7)2022 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-35405904

RÉSUMÉ

Gene single nucleotide polymorphisms can be used as auxiliary markers in molecular breeding and are an effective method to improve production performance. G0S2 is a key gene involved in regulating fat metabolism, but little research has been conducted on this gene regarding its role in poultry. In this study, the specialized commercial partridge chicken strain G0S2 gene was cloned and sequenced, and the relationship between the SNP sites on G0S2 and the carcass traits of chickens was investigated. The results showed that a total of seven SNPs were detected on G0S2 (g.102G > A, g.255G > A, g.349C > T, g.384A > G, g.386G > A, g.444G > A, g.556G > A). Two sites are located in the coding region and five sites are located in the 3'-UTR. SNPs located in the coding region are synonymous mutations. g.444G > A has a significant correlation with abdominal fat weight. The chickens with AG and GG genotypes have the highest abdominal fat weight, while the AA genotype is lower. The g.102G > A genotype has a significant correlation with live and abdominal fat weight. The live weight and abdominal fat weight of the chickens with AA and AG genotypes are at a higher level and have a larger gap than the GG genotype. Chickens with the AA genotype in g.556G > A had the lowest fat weight. The results of present study can provide practical information for molecular marker-assisted breeding of chicken carcass traits.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...