Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 566
Filtrer
1.
J Phys Chem Lett ; : 7118-7124, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38959028

RÉSUMÉ

Mechanofluorochromic materials are a type of "smart" material because of their adjustable fluorescent properties under external mechanical force, making them significant members of the materials family. However, as the fluorescent characteristics of these materials highly depend on their microstructures, the still insufficiently in-depth research linking molecular structures to light emission motivates researchers to explore the fluorescent properties of these materials under external stimuli. In this work, based on synthetic [AgS4] microplates, we explore a fascinating mechanical-induced photoluminescent enhancement phenomenon. By applying mechanical force to solid-state [AgS4] to damage the surface morphology, a significant enhancement in photoluminescence is observed. Moreover, the emitted intensity increases with the extent of damage, which can be attributed to alterations in crystallinity. This work provides valuable insights into the relationship among photoluminescence, crystallinity, and mechanical force, offering new strategies for designing luminescent devices.

2.
Gut ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38902029

RÉSUMÉ

OBJECTIVE: Hepatitis B surface antigen (HBsAg) loss is the optimal outcome for patients with chronic hepatitis B (CHB) but this rarely occurs with currently approved therapies. We aimed to develop and validate a prognostic model for HBsAg loss on treatment using longitudinal data from a large, prospectively followed, nationwide cohort. DESIGN: CHB patients receiving nucleos(t)ide analogues as antiviral treatment were enrolled from 50 centres in China. Quantitative HBsAg (qHBsAg) testing was prospectively performed biannually per protocol. Longitudinal discriminant analysis algorithm was used to estimate the incidence of HBsAg loss, by integrating clinical data of each patient collected during follow-up. RESULTS: In total, 6792 CHB patients who had initiated antiviral treatment 41.3 (IQR 7.6-107.6) months before enrolment and had median qHBsAg 2.9 (IQR 2.3-3.3) log10IU/mL at entry were analysed. With a median follow-up of 65.6 (IQR 51.5-84.7) months, the 5-year cumulative incidence of HBsAg loss was 2.4%. A prediction model integrating all qHBsAg values of each patient during follow-up, designated GOLDEN model, was developed and validated. The AUCs of GOLDEN model were 0.981 (95% CI 0.974 to 0.987) and 0.979 (95% CI 0.974 to 0.983) in the training and external validation sets, respectively, and were significantly better than those of a single qHBsAg measurement. GOLDEN model identified 8.5%-10.4% of patients with a high probability of HBsAg loss (5-year cumulative incidence: 17.0%-29.1%) and was able to exclude 89.6%-91.5% of patients whose incidence of HBsAg loss is 0. Moreover, the GOLDEN model consistently showed excellent performance among various subgroups. CONCLUSION: The novel GOLDEN model, based on longitudinal qHBsAg data, accurately predicts HBsAg clearance, provides reliable estimates of functional hepatitis B virus (HBV) cure and may have the potential to stratify different subsets of patients for novel anti-HBV therapies.

3.
Chem Sci ; 15(23): 8922-8933, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38873061

RÉSUMÉ

Surface-protecting ligands, as a major component of metal nanoclusters (MNCs), can dominate molecular characteristics, performance behaviors, and biological properties of MNCs, which brings diversity and flexibility to the nanoclusters and largely promotes their applications in optics, electricity, magnetism, catalysis, biology, and other fields. We report herein the design of a new kind of water-soluble luminescent gold nanoclusters (AuNCs) for enzyme-activatable charge transfer (CT) based on the ligand engineering of AuNCs with 6-mercaptopurine ribonucleoside (MPR). This elaborately designed cluster, Au5(MPR)2, can form a stable intramolecular CT state after light excitation, and exhibits long-lived color-tunable phosphorescence. After the cleavage by purine nucleoside phosphorylase (PNP), the CT triplet state can be easily directed to a low-lying energy level, leading to a bathochromic shift of the emission band accompanied by weaker and shorter-lived luminescence. Remarkably, these ligand-engineered AuNCs show high affinity towards PNP as well as decent performance for analyzing and visualizing enzyme activity and related drugs. The work of this paper provides a good example for diversifying physicochemical properties and application scenarios of MNCs by rational ligand engineering, which will facilitate future interest and new strategies to precisely engineer solution-based nanocluster materials.

4.
Talanta ; 277: 126352, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38838566

RÉSUMÉ

Aerosol pollutants significantly cause health concerns. Herein, we established an original real-time aerosol exposure system that used a self-designed bionic-lung microfluidic chip. The chip features a 4 × 4 intersecting array within gas and liquid layers, creating 16 distinct microenvironments. A membrane situated between the layers offers attachment for cells and establishes a gas-liquid interface. This design provides a reliable screening capacity for investigating the biological effects of aerosol exposure in vitro by manipulating the gas and/or liquid conditions. Using this system, we validated that cigarette smoke (CS) aerosol triggered a concentration- and time-dependent reduction in cell viability and intracellular glutathione levels, accompanied by an increase in intracellular reactive oxygen species and Fe2+. Furthermore, CS aerosol significantly downregulated the expression of GPX4, SLC7A11, and FTL mRNA while inducing a notable increase in that of ACSL4 mRNA. Additionally, CS aerosol markedly stimulated the release of proinflammatory cytokines. Crucially, the ferroptosis inhibitor deferoxamine mesylate reversed these biological indicators. These results demonstrate that our novel bionic-lung chip presents a suitably achievable approach to investigate the biological effects induced by aerosol exposure.

5.
Nano Lett ; 24(23): 6997-7003, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38721805

RÉSUMÉ

We report that constructed Au nanoclusters (NCs) can afford amazing white emission synergistically dictated by the Au(0)-dominated core-state fluorescence and Au(I)-governed surface-state phosphorescence, with record-high absolute quantum yields of 42.1% and 53.6% in the aqueous solution and powder state, respectively. Moreover, the dynamic color tuning is achieved in a wide warm-to-cold white-light range (with the correlated color temperature varied from 3426 to 24 973 K) by elaborately manipulating the ratio of Au(0) to Au(I) species and thus the electron transfer rate from staple motif to metal kernel. This study not only exemplifies the successful integration of multiple luminescent centers into metal NCs to accomplish efficient white-light emission but also inspires a feasible pathway toward customizing the optical properties of metal NCs by regulating electron transfer kinetics.

6.
Adv Physiol Educ ; 48(3): 479-487, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38695081

RÉSUMÉ

It is essential for modern medical students to continuously enhance their clinical thinking abilities. This study aims to evaluate the efficacy of the combined World Café discussion and case-based learning (CBL) approach within the clinical thinking training course. The clinical thinking training course incorporated the combined World Café discussion and CBL approach. The assessment of the accuracy and rationality of clinical symptoms, medical examination, pathological processes, diagnostic results, diagnostic basis, and drug use was conducted through case-related queries. Feedback from students and instructors regarding the teaching content, teaching process, and teaching effect was gathered through questionnaires. The findings indicate that the students achieved high marks in all assessed areas, including clinical symptoms, medical examination, pathological processes, diagnostic results, diagnostic basis, and drug use. The feedback from students and instructors on the teaching content, teaching process, and teaching effect was positive. Medical educators can use our findings to implement the combined World Café discussion and CBL mode to enhance student engagement.NEW & NOTEWORTHY The combined World Café discussion and case-based learning approach was implemented in the clinical thinking training course. Students' scores for clinical symptoms, medical examination, pathological process, diagnostic results, diagnostic basis, and drug use were all excellent. Feedback from both students and teachers on the teaching content, teaching process, and teaching effect was positive.


Sujet(s)
Apprentissage par problèmes , Étudiant médecine , Humains , Apprentissage par problèmes/méthodes , Enseignement médical premier cycle/méthodes , Femelle , Mâle , Évaluation des acquis scolaires/méthodes , Pensée (activité mentale) , Raisonnement clinique , Programme d'études , Enseignement , Enquêtes et questionnaires , Compétence clinique
7.
J Phys Chem Lett ; 15(19): 5137-5142, 2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38709498

RÉSUMÉ

The Brust-Schiffrin (BS) method for gold nanoparticle (Au NP) synthesis is celebrated for its ability to produce highly monodisperse NPs from toluene-water solutions, in contrast to aqueous methods, such as the Turkevich method. Despite the method's success, the actual formation mechanisms remain largely unknown due to difficulty in studying the intermediates with species-differentiating techniques such as mass spectrometry (MS) or nuclear magnetic resonance (NMR). The issue lies in the use of solvents poorly compatible with these techniques and the difficulty in differentiating useful intermediate species from side products and impurities in such one-pot reactions. Herein, we use our recently formulated fully aqueous BS reaction to study the formation mechanisms. MS is chiefly employed to capture the intermediate species, and the Au25(SR)18 nanocluster is used as a thermodynamically reliable end-point. We find that the BS method may comprise a unilateral complex-shedding stage in addition to the known thiol-etching stage.

8.
Molecules ; 29(8)2024 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-38675618

RÉSUMÉ

Mycobacterium tuberculosis (Mtb) is one of the major causes of human death. In its battle with humans, Mtb has fully adapted to its host and developed ways to evade the immune system. At the same time, the human immune system has developed ways to respond to Mtb. The immune system responds to viral and bacterial infections through a variety of mechanisms, one of which is alternative splicing. In this study, we summarized the overall changes in alternative splicing of the transcriptome after macrophages were infected with Mtb. We found that after infection with Mtb, cells undergo changes, including (1) directly reducing the expression of splicing factors, which affects the regulation of gene expression, (2) altering the original function of proteins through splicing, which can involve gene truncation or changes in protein domains, and (3) expressing unique isoforms that may contribute to the identification and development of tuberculosis biomarkers. Moreover, alternative splicing regulation of immune-related genes, such as IL-4, IL-7, IL-7R, and IL-12R, may be an important factor affecting the activation or dormancy state of Mtb. These will help to fully understand the immune response to Mtb infection, which is crucial for the development of tuberculosis biomarkers and new drug targets.


Sujet(s)
Épissage alternatif , Macrophages , ARN messager , Tuberculose , Humains , Régulation de l'expression des gènes , Interactions hôte-pathogène/génétique , Interactions hôte-pathogène/immunologie , Interleukine-4/génétique , Interleukine-4/métabolisme , Macrophages/immunologie , Macrophages/métabolisme , Macrophages/microbiologie , Mycobacterium tuberculosis/immunologie , ARN messager/génétique , ARN messager/métabolisme , Transcriptome , Tuberculose/immunologie , Tuberculose/génétique , Tuberculose/microbiologie
9.
Food Chem Toxicol ; 188: 114668, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38641044

RÉSUMÉ

The safety of propylene glycol (PG) and vegetable glycerin (VG) as solvents in electronic cigarette liquid has received increasing attention and discussion. However, the conclusions derived from toxicity assessments conducted through animal experiments and traditional in vitro methodologies have consistently been contentious. This study constructed an original real-time aerosol exposure system, centered around a self-designed microfluidic bionic-lung chip, to assess the biological effects following exposure to aerosols from different solvents (PG, PG/VG mixture alone and PG/VG mixture in combination with nicotine) on BEAS-2B cells. The study aimed to investigate the impact of aerosols from different solvents on gene expression profiles, intracellular biomarkers (i.e., reactive oxygen species content, nitric oxide content, and caspase-3/7 activity), and extracellular biomarkers (i.e., IL-6, IL-8, TNF-α, and malondialdehyde) of BEAS-2B cells on-chip. Transcriptome analyses suggest that ribosomal function could serve as a potential target for the impact of aerosols derived from various solvents on the biological responses of BEAS-2B cells on-chip. And the results showed that aerosols of PG/VG mixtures had significantly less effect on intracellular and extracellular biomarkers in BEAS-2B cells than aerosols of PG, whereas increasing nicotine levels might elevate these effects of aerosol from PG/VG mixture.


Sujet(s)
Aérosols , Dispositifs électroniques d'administration de nicotine , Solvants , Humains , Solvants/toxicité , Solvants/composition chimique , Lignée cellulaire , Propylène glycol/toxicité , Glycérol/toxicité , Glycérol/composition chimique , Laboratoires sur puces , Espèces réactives de l'oxygène/métabolisme , Nicotine/toxicité , Marqueurs biologiques/métabolisme
10.
J Am Chem Soc ; 146(17): 11773-11781, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38648616

RÉSUMÉ

Natural enzymes intricately regulate substrate accessibility through specific amino acid sequences and folded structures at their active sites. Achieving such precise control over the microenvironment has proven to be challenging in nanocatalysis, especially in the realm of ligand-stabilized metal nanoparticles. Here, we use atomically precise metal nanoclusters (NCs) as model catalysts to demonstrate an effective ligand engineering strategy to control the local concentration of CO2 on the surface of gold (Au) NCs during electrocatalytic CO2 reduction reactions (CO2RR). The precise incorporation of two 2-thiouracil-5-carboxylic acid (TCA) ligands within the pocket-like cavity of [Au25(pMBA)18]- NCs (pMBA = para-mercaptobenzoic acid) leads to a substantial acceleration in the reaction kinetics of CO2RR. This enhancement is attributed to a more favorable microenvironment in proximity to the active site for CO2, facilitated by supramolecular interactions between the nucleophilic Nδ- of the pyrimidine ring of the TCA ligand and the electrophilic Cδ+ of CO2. A comprehensive investigation employing absorption spectroscopy, mass spectrometry, isotopic labeling measurements, electrochemical analyses, and quantum chemical computation highlights the pivotal role of local CO2 enrichment in enhancing the activity and selectivity of TCA-modified Au25 NCs for CO2RR. Notably, a high Faradaic efficiency of 98.6% toward CO has been achieved. The surface engineering approach and catalytic fundamentals elucidated in this study provide a systematic foundation for the molecular-level design of metal-based electrocatalysts.

11.
Free Radic Biol Med ; 216: 60-77, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38479634

RÉSUMÉ

Parkinson's disease (PD) is a prevalent progressive and multifactorial neurodegenerative disorder. Cordycepin is known to exhibit antitumor, anti-inflammatory, antioxidative stress, and neuroprotective effects; however, few studies have explored the neuroprotective mechanism of cordycepin in PD. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, we investigated the impact of cordycepin on PD and its underlying molecular mechanisms. The findings indicated that cordycepin significantly mitigated MPTP-induced behavior disorder and neuroapoptosis, diminished the loss of dopaminergic neurons in the striatum-substantia nigra pathway, elevated striatal monoamine levels and its metabolites, and inhibited the polarization of microglia and the expression of pro-inflammatory factors. Subsequent proteomic and phosphoproteomic analyses revealed the involvement of the MAPK, mTOR, and PI3K/AKT signaling pathways in the protective mechanism of cordycepin. Cordycepin treatment inhibited the activation of the PI3K/AKT/mTOR signaling pathway and enhanced the expression of autophagy proteins in the striatum and substantia nigra. We also demonstrated the in vivo inhibition of the ERK/JNK signaling pathway by cordycepin treatment. In summary, our investigation reveals that cordycepin exerts neuroprotective effects against PD by promoting autophagy and suppressing neuroinflammation and neuronal apoptosis by inhibiting the PI3K/AKT/mTOR and ERK/JNK signaling pathways. This finding highlights the favorable characteristics of cordycepin in neuroprotection and provides novel molecular insights into the neuroprotective role of natural products in PD.


Sujet(s)
Désoxyadénosine , Neuroprotecteurs , Maladie de Parkinson , Souris , Animaux , Maladie de Parkinson/traitement médicamenteux , Maladie de Parkinson/génétique , Maladie de Parkinson/métabolisme , Neuroprotecteurs/pharmacologie , Protéines proto-oncogènes c-akt/génétique , Protéines proto-oncogènes c-akt/métabolisme , Phosphatidylinositol 3-kinases/génétique , Phosphatidylinositol 3-kinases/métabolisme , Maladies neuro-inflammatoires , Protéomique , Sérine-thréonine kinases TOR/génétique , Sérine-thréonine kinases TOR/métabolisme , Souris de lignée C57BL , Neurones dopaminergiques/métabolisme , Modèles animaux de maladie humaine , 1-Méthyl-4-phényl-1,2,3,6-tétrahydropyridine/effets indésirables
12.
Adv Mater ; 36(25): e2401002, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38521974

RÉSUMÉ

Metal nanoclusters (MNCs) can be synthesized with atomically precise structures and molecule formulae due to the rapid development of nanocluster science in recent decades. The ultrasmall size range (normally < 2 nm) endows MNCs with plenty of molecular-like properties, among which photoluminescent properties have aroused extensive attention. Tracing the research and development processes of luminescent nanoclusters, various photoluminescent analysis and characterization methods play a significant role in elucidating luminescent mechanism and analyzing luminescent properties. In this review, it is aimed to systematically summarize the normally used photoluminescent characterizations in MNCs including basic parameters and methods, such as excitation/emission wavelength, quantum yield, and lifetime. For each key parameter, first its definition and meaning is introduced and then the relevant characterization methods including measuring principles and the revelation of luminescent properties from the collected data are discussed. Then, it is discussed in details how to explore the luminescent mechanism of MNCs and construct NC-based applications based on the measured data. By means of these characterization strategies, the luminescent properties of MNCs and NC-based designs can be explained quantitatively and qualitatively. Hence, this review is expected to provide clear guidance for researchers to characterize luminescent MNCs and better understand the luminescent mechanism from the measured results.

13.
Anal Chim Acta ; 1300: 342446, 2024 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-38521574

RÉSUMÉ

BACKGROUND: In vitro toxicity assessment studies with various experimental models and exposure modalities frequently generate diverse outcomes. In the prevalent experimental, aerosol pollutants are dissolved in culture medium through capture for exposure to two-dimensional planar cellular models in multiwell plates via immersion. However, this approach can generate restricted and inconclusive experimental data, significantly constraining the applicability of risk assessment outcomes. Herein, the in vitro cocultivation of lung epithelial and/or vascular endothelial cells was performed using self-designed bionic-lung microfluidic chip housing a gas-concentration gradient generator (GCGG) unit. Exposure experiments involving a concentration gradient of cigarette smoke (CS) aerosol were then conducted through an original assembled real-time aerosol exposure system. RESULTS: Transcriptomic analysis revealed a potential involvement of the cGMP-signaling pathway following online CS aerosol exposure on different cell culture models. Furthermore, distinct responses to different concentrations of CS aerosol exposure on different culture models were highlighted by detecting inflammation- and oxidative stress-related biomarkers (i.e., cell viability, reactive oxygen species, nitric oxide, IL-6, IL-8, TNF-α, GM-CSF, malondialdehyde, and superoxide dismutase). SIGNIFICANT: The results underscore the importance of improving chip biomimicry while addressing multi-throughput demands, given the substantial influence of the coculture model on cellular responses triggered by CS. Furthermore, the coculture model exhibited a mutually beneficial protective effect on cells at low CS concentrations within the GCGG unit, yet revealed a mutually amplified damaging effect at higher CS concentrations in contrast to the monoculture model.


Sujet(s)
Fumer des cigarettes , Microfluidique , Techniques de coculture , Cellules endothéliales , Bionique , Poumon , Nicotiana , Aérosols
14.
Anal Methods ; 16(14): 2111-2119, 2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38516815

RÉSUMÉ

Microfluidic-based assessment platforms have recently attracted considerable attention and have been widely used for evaluating in vitro toxic effects. In the present study, we developed an original real-time aerosol exposure system, which focused on a self-designed microfluidic chip, in order to evaluate the toxicological effects following exposure to inhalable aerosols. The three-layer structured microfluidic chip enables real-time aerosol exposure at the gas-liquid interface. The comprehensive detection of toxic effect biomarkers based on this assessment platform encompasses transcriptomics, in situ fluorescence detection, and the identification of extracellular secretagogues. Correspondingly, the effects of selected inhalable aerosols such as cigarette smoke (CS), heated tobacco product smoke (HS), and electronic cigarette smoke (ES) on gene expression profiles, cell viability, intracellular biomarkers (reactive oxygen species and nitric oxide), apoptosis (caspase-3/7 activity), and extracellular biomarkers (IL-8, IL-1ß, TNF-α, and malondialdehyde) in the BEAS-2B cells present on the chip were investigated. Following exposure to aerosols derived from CS, HS, and ES, the transcriptome analysis revealed differential expression in these cells. In addition, the overlapping DEGs from the different treatment groups were found to be primarily associated with stimuli and inflammatory responses. Correspondingly, each of the three categories of selected inhalable aerosols was confirmed to induce significant changes in biomarkers that were associated with toxic effects. These results suggest that the original real-time aerosol exposure system centered around a self-designed chip can be applied to the toxic effect evaluation of inhalable aerosol exposure.


Sujet(s)
Aérosols , Marqueurs biologiques , Microfluidique , Pollution par la fumée de tabac , Aérosols/toxicité , Dispositifs électroniques d'administration de nicotine , Pollution par la fumée de tabac/effets indésirables , Humains , Lignée cellulaire
15.
Heliyon ; 10(5): e27400, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38495141

RÉSUMÉ

Mycobacterium tuberculosis (M. tuberculosis) is the pathogen of human tuberculosis (TB). Resistance to numerous in vivo stresses, including oxidative stress, is determinant for M. tuberculosis intracellular survival, and understanding associated mechanisms is crucial for developing new therapeutic strategies. M. tuberculosis Rv2617c has been associated with oxidative stress response when interacting with other proteins in M. tuberculosis; however, its functional promiscuity and underlying molecular mechanisms remain elusive. In this study, we investigated the phenotypic changes of Mycobacterium smegmatis (M. smegmatis) expressing Rv2617c (Ms_Rv2617c) and its behavior in the presence of various in vitro stresses and phage infections. We found that Rv2617c conferred resistance to SDS and diamide while sensitizing M. smegmatis to oxidative stress (H2O2) and altered mycobacterial phenotypic properties (single-cell clone and motility), suggestive of reprogrammed mycobacterial cell wall lipid contents exemplified by increased cell wall permeability. Interestingly, we also found that Rv2617c promoted M. smegmatis resistance to infection by phages (SWU1, SWU2, D29, and TM4) and kept phage TM4 from destroying mycobacterial biofilms. Our findings provide new insights into the role of Rv2617c in resistance to oxide and acid stresses and report for the first time on its role in phage resistance in Mycobacterium.

16.
J Am Chem Soc ; 146(12): 8706-8715, 2024 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-38487838

RÉSUMÉ

Metal nanoclusters (MNCs) represent a promising class of materials for catalytic carbon dioxide and proton reduction as well as dihydrogen oxidation. In such reactions, multiple proton-coupled electron transfer (PCET) processes are typically involved, and the current understanding of PCET mechanisms in MNCs has primarily focused on the sequential transfer mode. However, a concerted transfer pathway, i.e., concerted electron-proton transfer (CEPT), despite its potential for a higher catalytic rate and lower reaction barrier, still lacks comprehensive elucidation. Herein, we introduce an experimental paradigm to test the feasibility of the CEPT process in MNCs, by employing Au18(SR)14 (SR denotes thiolate ligand), Au22(SR)18, and Au25(SR)18- as model clusters. Detailed investigations indicate that the photoinduced PCET reactions in the designed system proceed via an CEPT pathway. Furthermore, the rate constants of gold nanoclusters (AuNCs) have been found to be correlated with both the size of the cluster and the flexibility of the Au-S framework. This newly identified PCET behavior in AuNCs is prominently different from that observed in semiconductor quantum dots and plasmonic metal nanoparticles. Our findings are of crucial importance for unveiling the catalytic mechanisms of quantum-confined metal nanomaterials and for the future rational design of more efficient catalysts.

17.
iScience ; 27(2): 108850, 2024 Feb 16.
Article de Anglais | MEDLINE | ID: mdl-38303716

RÉSUMÉ

The biosilicification of diatoms allows for the customization of the synthesis of functionalized diatom frustules. The S active sites (-SH) on diatom frustules were created by adding the organic silicon sources tetramethoxysilane (TMOS) and (3-mercaptopropyl)trimethoxysilane (MPTMS). The mechanisms of adsorption-reduction and the indirect effects of S active sites on electrochemical performance were declared. The DBS@C-Ag-3 anode material sourced from the cultivation condition with a silicon source of TMOS:MPTMS = 3:1 shows the best comprehensive performance and delivers a discharge capacity of ∼660 mAh·g-1 after 1000 cycles at 1 A·g-1. The electrochemical performance of DBS@C-Ag anode materials is also found to be dominated by structure at high temperatures and conductivity at low temperatures. Such a diatom frustule structure with sulfhydryl functionalization is promising for anode materials, and it suggests a biological strategy for creating other electrode materials by modifying them with metals to improve electrochemical performances.

19.
Anal Chim Acta ; 1287: 342049, 2024 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-38182364

RÉSUMÉ

BACKGROUND: Typically, in vitro studies on the exposure of complex gaseous substances are performed in multi-well plate experiments by trapping and redissolving them, which could introduce potential bias into the results due to the use of inadequate trapping methods. Therefore, a more effective method is to expose complex gaseous substances in gaseous form online, such as using microfluidic chips in experiments. To address these challenges, we introduce a methodology that integrates a self-designed bionic-lung chip with transcriptome analysis to assess the impact of cigarette smoke (CS) exposure on changes in BEAS-2B cells cultured on-chip. RESULTS: After the microfluidic chip underwent online gas exposure, total RNA was extracted via in situ cell lysis, and RNA-Seq transcriptome analysis was conducted. And the RNA-Seq findings revealed the significant involvement of the MAPK signaling pathway associated with the inflammatory response in the cellular effects induced by CS exposure. Moreover, the validation of inflammatory response-related biomarkers through in situ fluorescence corroborated the outcomes of the transcriptome analysis. Besides, the experiment involving the inhibition of inflammation by DEX on the microfluidic chip provided additional confirmation of the previous experimental findings. SIGNIFICANT: In this study, we present an analytical strategy that combines microfluidic-based CS in situ exposure method with RNA-Seq technology. This strategy offers an experimental scheme for in situ exposure to complex gases, transcriptome analysis, and in situ fluorescence detection. Through the integration of the comprehensiveness of transcriptome analysis with the chip's direct and intuitive in situ fluorescence detection with the stability and reliability of RT-PCR and Western blot experiments, we have successfully addressed the challenges associated with in vitro risk assessment for online exposure to complex gaseous substances.


Sujet(s)
Fumer des cigarettes , Humains , Microfluidique , Reproductibilité des résultats , Analyse de profil d'expression de gènes , Gaz , Inflammation
20.
Yi Chuan ; 46(1): 34-45, 2024 Jan 20.
Article de Anglais | MEDLINE | ID: mdl-38230455

RÉSUMÉ

Currently, there are over 170 recognized species of Mycobacterium, the only genus in the family Mycobacteriaceae. Organisms belonging to this genus are quite diverse with respect to their ability to cause disease in humans. The Mycobacterium genus includes human pathogens (Mycobacterium tuberculosis complex and Mycobacterium leprae) and environmental microorganisms known as non-tuberculosis mycobacteria (NTM). A common pathogenic factor of Mycobacterium is the formation of biofilms. Bacterial biofilms are usually defined as bacterial communities attached to the surface, and are also considered as shared spaces of encapsulated microbial cells, including various extracellular polymeric substrates (EPS), such as polysaccharides, proteins, amyloid proteins, lipids, and extracellular DNA (EDNA), as well as membrane vesicles and humic like microorganisms derived refractory substances. The assembly and dynamics of the matrix are mainly coordinated by second messengers, signaling molecules, or small RNAs. Fully deciphering how bacteria provide structure for the matrix, thereby promoting extracellular reactions and benefiting from them, remains a challenge for future biofilm research. This review introduces a five step development model for biofilms and a new model for biofilm formation, analyses the pathogenicity of biofilms, their interactions with bacteriophages and host immune cells, and the key genes and regulatory networks of mycobacterial biofilms, as well as mycobacterial biofilms and drug resistance, in order to provide a basis for clinical treatment of diseases caused by biofilms.


Sujet(s)
Mycobacterium , Humains , Biofilms , Protéines , ADN , Antibactériens/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...