Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
New Phytol ; 241(4): 1421-1434, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38174365

RÉSUMÉ

Receptor-like kinases (RLKs) are evolved for plant cell-cell communications. The typical RLK protein contains an extracellular and hypervariable N-terminus to perceive various signals, a transmembrane domain to anchor into plasma membrane, and a cytoplasmic, highly conserved kinase domain to phosphorylate target proteins. To date, RLKs have manifested their significance in a myriad of biological processes during plant reproductive growth, especially in male fertility. This review first summarizes a recent update on RLKs and their interacting protein partners controlling anther and pollen development, pollen release from dehisced anther, and pollen function during pollination and fertilization. Then, regulatory networks of RLK signaling pathways are proposed. In addition, we predict RLKs in maize and rice genome, obtain homologs of well-studied RLKs from phylogeny of three subfamilies and then analyze their expression patterns in developing anthers of maize and rice to excavate potential RLKs regulating male fertility in crops. Finally, current challenges and future prospects regarding RLKs are discussed. This review will contribute to a better understanding of plant male fertility control by RLKs, creating potential male sterile lines, and inspiring innovative crop breeding methods.


Sujet(s)
Amélioration des plantes , Plantes , Plantes/génétique , Plantes/métabolisme , Transduction du signal , Protein kinases/génétique , Protein kinases/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Fécondité
3.
ACS Appl Mater Interfaces ; 13(13): 15890-15900, 2021 Apr 07.
Article de Anglais | MEDLINE | ID: mdl-33769781

RÉSUMÉ

In this work, we present the potential of high vacuum-compatible time-of-flight secondary ion mass spectrometry (TOF-SIMS) detectors, which can be integrated within focused ion beam (FIB) instruments for precise and fast chemical characterization of thin films buried deep under the sample surface. This is demonstrated on complex multilayer systems composed of alternating ceramic and metallic layers with thicknesses varying from several nanometers to hundreds of nanometers. The typical problems of the TOF-SIMS technique, that is, low secondary ion signals and mass interference between ions having similar masses, were solved using a novel approach of co-injecting fluorine gas during the sample surface sputtering. In the most extreme case of the Al/Al2O3/Al/Al2O3/.../Al sample, a <10 nm thick Al2O3 thin film buried under a 0.5 µm material was detected and spatially resolved using only 27Al+ signal distribution. This is an impressive achievement taking into account that Al and Al2O3 layers varied only by a small amount of oxygen content. Due to its high sensitivity, fluorine gas-assisted FIB-TOF-SIMS can be used for quality control of nano- and microdevices as well as for the failure analysis of fabrication processes. Therefore, it is expected to play an important role in the development of microelectronics and thin-film-based devices for energy applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...