Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.504
Filtrer
1.
Biomaterials ; 313: 122793, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39226655

RÉSUMÉ

Numerous nanoparticles have been utilized to deliver Fe2+ for tumor ferroptosis therapy, which can be readily converted to Fe3+via Fenton reactions to generate hydroxyl radical (•OH). However, the ferroptosis therapeutic efficacy of large tumors is limited due to the slow conversion of Fe3+ to Fe2+via Fenton reactions. Herein, a strategy of intratumor Fe3+/2+ cyclic catalysis is proposed for ferroptosis therapy of large tumors, which was realized based on our newly developed hollow mesoporous iron sesquioxide nanoparticle (HMISN). Cisplatin (CDDP) and Gd-poly(acrylic acid) macrochelates (GP) were loaded into the hollow core of HMISN, whose surface was modified by laccase (LAC). Fe3+, CDDP, GP, and LAC can be gradually released from CDDP@GP@HMISN@LAC in the acidic tumor microenvironment. The intratumor O2 can be catalyzed into superoxide anion (O2•-) by LAC, and the intratumor NADPH oxidases can be activated by CDDP to generate O2•-. The O2•- can react with Fe3+ to generate Fe2+, and raise H2O2 level via the superoxide dismutase. The generated Fe2+ and H2O2 can be fast converted into Fe3+ and •OH via Fenton reactions. The cyclic catalysis of intratumor Fe3+/2+ initiated by CDDP@GP@HMISN@LAC can be used for ferroptosis therapy of large tumors.

2.
ACS Chem Biol ; 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39225324

RÉSUMÉ

This research presents a unique small molecule characterized by its ability to effectively disrupt RNA G-quadruplexes (G4s), which are notably more stable than their DNA counterparts. We conducted a comprehensive series of in vitro experiments to thoroughly assess the disruptive capabilities of this molecule on RNA G4s. These experiments included comparisons with established G4 stabilizers and DNA G4 disruptors, providing a multifaceted evaluation of the molecule's efficacy. Our extensive in vitro analyses demonstrated that this molecule effectively alters G4 structures and interactions with the BG4 protein, a well-recognized G4-specific antibody. These findings underscore the molecule's potential to modulate G4-protein interactions, indicating promising applications for manipulating cellular functions associated with G4 dynamics in future research.

3.
Cell Oncol (Dordr) ; 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39222175

RÉSUMÉ

PURPOSE: Bromodomain-containing protein 7 (BRD7) is downregulated and functions as a tumor suppressor in many types of cancers including breast cancer, and the dysregulation of BRD7 expression is closely related to the development and progression of breast cancer. Whereas little attention has been focused on the regulation of BRD7 protein levels in breast cancer, which needs to be further elucidated. METHODS: The protein stability of BRD7 in breast cancer cells and BRD7 protein level in breast cancer tissues was examined by Western Blotting. The potential E3 ubiquitin ligase proteins that interact with the BRD7 was screened by coimmunoprecipitation combined with mass spectrometry analysis in MDA-MB-231 cells. We proved the interaction between BRD7 and tripartite motif containing 28 (TRIM28) through Co-Immunoprecipitation (Co-IP) and immunofluorescence assays. Co-IP and ubiquitination assay were used to explore the specific binding domain between BRD7 and TRIM28 and the ubiquitination site of BRD7. The effects of TRIM28 on the BRD7 protein stability and ubiquitination level was investigated by qPCR, Western Blot and Co-IP assay. CCK-8 and clone formation assays were carried out to assess the effect of TRIM28 on proliferation ability of breast cancer ells. Transwell assay and wound healing assay were used to investigate the effect of TRIM28 on breast cancer cell invasion and migration. Flow cytometry was used to detect the effect of TRIM28 on cell cycle and apoptosis of breast cancer cells. In addition, we confirmed effect of TRIM28 on tumor growth and metastasis by xenograft and metastatic mouse models. We designed some recovery assays to explore the role of recovery BRD7 in TRIM28-mediated promotion of malignant progression of breast cancer in vivo and in vitro. Finally, the clinical significance of TRIM28 and BRD7 was proved by immunohistochemistry. RESULTS: In this study, we demonstrated that BRD7 was an unstable protein and might be regulated by ubiquitination in breast cancer; furthermore, we found that the Coiled-Coil region of TRIM28 could directly bind to N-terminal of BRD7, and TRIM28 mediates BRD7 ubiquitination and degradation dependent on K21 by acting as a potential E3 ubiquitin ligase. Moreover, TRIM28 promoted cell proliferation, migration, invasion, xenograft tumor growth and metastasis, thus playing an oncogenic role in breast cancer. Furthermore, the restoration of BRD7 expression in breast cancer significantly reversed the promotional effects of TRIM28 on malignant progression both in vitro and in vivo. In addition, TRIM28 was highly expressed in the biopsy tissues of breast cancer, and its expression was negatively correlated with BRD7 expression and positively correlated with TNM stage and poor prognosis of BC patients. CONCLUSIONS: Our findings provide a novel mechanism by which TRIM28 significantly facilitates BRD7 ubiquitination and degradation, thus promoting breast cancer malignant progression. Targeting the TRIM28/BRD7 axis might be a novel potential strategy for the clinical diagnosis and treatment of breast cancer.

4.
J Ethnopharmacol ; 337(Pt 1): 118764, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39218127

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal formulae have been used in China for thousands of years but have unclear clinical positioning and unknown characteristic indications make it difficult to determine their specific application in various diseases, which seriously hamper their clinical value. Identifying the precise clinical positioning and clinical advantages of similar formulae for related diseases is a critical issue. AIM OF THIS STUDY: To develop a methodology based on modular pharmacology to determine the clinical advantages and precise clinical position of similar formulae. MATERIALS AND METHODS: In this study, we proposed a modular-based network proximity approach to explore drug repositioning and clinical advantages of three formulae, Shirebi tablets (SRB), Yuxuebi capsules (YXB), and Wangbifukang granules (WBFK), for rheumatic disease. First, we constructed a rheumatology target network, and modules were obtained using the cluster tool molecular complex detection (MCODE). Based on the modular interaction map established by a quantitative approach for inter-module coordination and its transition (IMCC), using a targeting rate (TR) matrix to identify targeted modules of three formulae. Moreover, the network proximity Z-score and Jaccard similarity coefficient were used to identify potential optimal symptomatic indications and related diseases using three formulae. At the same time, the driver genes for SRB and gouty arthritis were identified by flow centrality and shortest distance, and the epresentative driver genes were validated by in vivo experiments. RESULTS: 32 modules were obtained using the MCODE method. 4, 4, and 14 characteristic targeted modules of SRB, YXB, and WBFK, respectively, were identified using a targeting rate (TR) matrix. Module 2, 16, and 19 were targeted by both SRB and WBFK. The common effects of SRB and WBFK focused on inflammatory response and innate immune response, YXB was found to be involved in the collagen catabolic process, transmembrane receptor protein serine/threonine kinase signaling pathway. Moreover, potential optimal symptomatic indications and representative related diseases were identified for three formulae: SRB was significantly associated with GA (Z = -20.26); YXB was significantly associated with AS (Z = -4.532), MI (Z = -29.11), RhFv (Z = -6.945), OA (Z = -39.97), and GA (Z = -13.03); and WBFK was significantly associated with MI (Z = -205.5), SLE (Z = -37.65), RhFv (Z = -42.45), and GA (Z = -17.24). Finally, 8 driver genes for SRB and gouty arthritis were identified,the representative driver genes TRAF6 and NFE2L1 were validated by in vivo experiments. CONCLUSIONS: The modular-based network proximity approach proposed in this study may provide a new perspective for the precise drug repositioning and clinical advantages of similar formulae in disease treatment.

5.
Dalton Trans ; 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39234661

RÉSUMÉ

Surface modification is one of the effective strategies to control the morphology and electrocatalytic performance of noble metal/transition metal oxide matrix composite catalysts. In this work, we successfully introduced modification groups such as -NH2, -COOH, and -SH on the surface of Fe3O4 using the hydrothermal method. It was found that when the modification group -COOH was introduced, the regular spherical morphology of Fe3O4 was still maintained in Fe3O4-COOH, while Fe3O4-COOH had a relatively smaller spherical particle size (≈155.9 nm). Due to its smaller particle size, Fe3O4-COOH has a larger active area than Fe3O4, exposing more active sites. The abundant active sites in Fe3O4-COOH provide more nucleation and growth sites for Au particles, which is beneficial for the recombination between Fe3O4-COOH and Au. In addition, the experimental results of exploring the effect of Au precursor dosage on the synthesis of the Fe3O4-COOH@Au structure and performance show that the synthesized Fe3O4-COOH@Au1.0 catalyst has higher electrocatalytic activity. Due to the larger electrochemically active surface area of the Fe3O4-COOH@Au1.0 catalyst compared to those of Fe3O4-COOH@Au0.5 and Fe3O4-COOH@Au1.5 catalysts, the adsorption and activation of NO2- reactants were accelerated, thereby improving the electrocatalytic performance. Therefore, owing to the morphological and structural characteristics of Fe3O4-COOH combined with the high activity of Au nanoparticles, the synthesized Fe3O4-COOH@Au exhibits effective electrocatalytic activity in the electrocatalytic NO2-RR synthesis of ammonia. At a voltage of -0.8 V (vs. RHE), the ammonia yield reached 2092.8 µg h-1 mgcat-1 and Faraday efficiency reached 81.2%. The findings of this work will enrich our understanding of the construction of efficient Fe3O4@Au catalysts based on surface functionalization and help to design efficient electrocatalytic NO2-RR catalysts for practical applications.

6.
Sci Rep ; 14(1): 20400, 2024 09 02.
Article de Anglais | MEDLINE | ID: mdl-39223234

RÉSUMÉ

To select the core target (RAB13) in sepsis patients' peripheral blood and investigate its molecular functions and possible mechanisms. The peripheral blood of sepsis patients (n = 21) and healthy individuals (n = 9) within 24 h after admission were collected for RNA-seq, and differential gene screening was performed by iDEP online analysis software (P < 0.01; log2FC ≥ 2) and enrichment analysis, the potential core target RAB13 was screened out. The association between RAB13 expression and sepsis severity was explored using multiple datasets in the GEO database, and survival analysis was conducted. Subsequently, peripheral blood mononuclear cells (PBMCs) from sepsis and control groups were isolated, and 10 × single-cell sequencing was used to identify the main RAB13-expressing cell types. Finally, LPS was used to stimulate THP1 cells to construct a sepsis model to explore the function and possible mechanism of RAB13. We found that RAB13 was a potential core target, and RAB13 expression level was positively associated with sepsis severity and negatively correlated with survival based on multiple public datasets. A single-cell sequencing indicated that RAB13 is predominantly localized in monocytes. Cell experiments validated that RAB13 is highly expressed in sepsis, and the knockdown of RAB13 promotes the polarization of macrophages towards the M2 phenotype. This mechanism may be associated with the ECM-receptor interaction signaling pathway. The upregulation of RAB13 in sepsis patients promotes the polarization of M2-like macrophages and correlates positively with the severity of sepsis.


Sujet(s)
Macrophages , Sepsie , Protéines G rab , Humains , Sepsie/métabolisme , Sepsie/génétique , Sepsie/anatomopathologie , Protéines G rab/métabolisme , Protéines G rab/génétique , Macrophages/métabolisme , Mâle , Femelle , Adulte d'âge moyen , Cellules THP-1 , Sujet âgé , Études cas-témoins , Agranulocytes/métabolisme , Lipopolysaccharides/pharmacologie
7.
J Cancer ; 15(16): 5230-5243, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247609

RÉSUMÉ

The lysyl oxidase (LOX) family proteins are secreted copper-dependent amine oxidases, comprised of five paralogues: LOX and LOX-like 1-4 (LOXL1-4), which are characterized by catalytic activity contributing to the remodeling of the cross-linking of the structural extracellular matrix (ECM). ECM remodeling plays a key role in the angiogenesis surrounding tumours, whereby a corrupt tumour microenvironment (TME) takes shape. Additionally, dysregulation and aberrant expression of LOX family proteins have been implicated in the occurrence and progression of various types of human cancers, including lung cancer, hepatocellular carcinoma, gastric cancer, renal cell carcinoma, and colorectal cancer. Breast cancer is the most prevalent malignant tumour in women worldwide, and its incidence rate is increasing annually. In recent years, a growing body of evidence has revealed significant upregulation of LOX family proteins in breast cancer, which contributes to cancer cell proliferation, invasion, and metastasis. Furthermore, elevated expression of LOX family proteins is closely associated with poor prognosis in breast cancer patients. We herein review the structure, regulation, function, and mechanisms of LOX family proteins in the occurrence and progression of breast cancer. In addition, we highlight recent insights into their mechanisms and their potential involvement in the clinical value and novel biological roles of LOX family members in tumour progression and the TME of breast cancer. This review will provide a theoretical basis and reference for clinical diagnosis and treatment of breast cancer, as well as for the screening of effective LOX-specific inhibitors.

8.
Mol Cell Probes ; 77: 101975, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39111403

RÉSUMÉ

Recently, it has been discovered surprisingly that tRNA can be cleaved into specific small fragments under certain conditions. Most importantly, these tRNA-derived fragments (tRFs) participate in the regulation of gene expression, playing pivotal roles in various physiological and pathological processes and thus attracting widespread attention. Detecting tRF expression in tissues and cells often involves using tRF-specific stem-loop primers for reverse transcription. However, the high specificity offered by this method limits it to transcribing only one specific tRF sequence per reaction, necessitating separate reverse transcription and qPCR steps for multiple tRFs, leading to substantially increased time and resource consumption. This becomes especially challenging in precious samples with limited RNA availability. To address these issues, there is an urgent need for a universal and cost-effective tRF identification method. This study introduces a versatile tRF detection approach based on the uniform polyadenylation of all tRFs, allowing reverse transcription with a universal oligo(dT) primer. This method enables simultaneous reverse transcription of all target tRFs in one reaction, greatly facilitating subsequent qPCR analysis. Furthermore, it demonstrates exceptional sensitivity and specificity, offering significant value in tRF-related research.

9.
Cell Oncol (Dordr) ; 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39133439

RÉSUMÉ

Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates formed by the structured accumulation of immune cells such as B cells and T cells in non-lymphoid tissues induced by infection, inflammation, and tumors. They play a crucial role in the immune response, particularly in association with tumor development, where they primarily exert anti-tumor immune functions during tumorigenesis. Current research suggests that TLSs inhibit tumor growth by facilitating immune cell infiltration and are correlated with favorable prognosis in various solid tumors, serving as an indicator of immunotherapy effectiveness to some extent. Therefore, TLSs hold great promise as a valuable biomarker. Most importantly, immunotherapies aimed to prompting TLSs formation are anticipated to be potent adjuncts to current cancer treatment. This review focuses on the formation process of TLSs and their potential applications in cancer therapy.

10.
Small ; : e2402767, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39086056

RÉSUMÉ

Electroactive organic electrode materials exhibit remarkable potential in aqueous zinc ion batteries (AZIBs) due to their abundant availability, customizable structures, sustainability, and high reversibility. However, the research on AZIBs has predominantly concentrated on unraveling the storage mechanism of zinc cations, often neglecting the significance of anions in this regard. Herein, bipolar poly(thionine) is synthesized by a simple and efficient polymerization reaction, and the kinetics of different anions are investigated using poly(thionine) as the cathode of AZIBs. Notably, poly(thionine) is a bipolar organic polymer electrode material and exhibits enhanced stability in aqueous solutions compared to thionine monomers. Kinetic analysis reveals that ClO4 - exhibits the fastest kinetics among SO4 2-, Cl-, and OTF-, demonstrating excellent rate performance (109 mAh g-1 @ 0.5 A g-1 and 92 mAh g-1 @ 20 A g-1). Mechanism studies reveal that the poly(thionine) cathode facilitates the co-storage of both anions and cations in Zn(ClO4)2. Furthermore, the lower electrostatic potential of ClO4 - influences the strength of hydrogen bonding with water molecules, thereby enhancing the overall kinetics in aqueous electrolytes. This work provides an effective strategy for synthesizing high-quality organic materials and offers new insights into the kinetic behavior of anions in AZIBs.

11.
J Clin Anesth ; 98: 111564, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39089119

RÉSUMÉ

STUDY OBJECTIVE: This study aims to evaluate the impact of Supreme™ laryngeal masks versus endotracheal tubes on atelectasis during general anesthesia using lung ultrasound (LUS), and provide evidence for respiratory management. DESIGN: A single-center, double-blind, randomized controlled trial was conducted. SETTING: The study was conducted in both the operating room and the post-anesthesia care unit, with follow-up assessments performed in the ward. PATIENTS: Enrollment included 180 cases undergoing non-laparoscopic surgeries in gynecology, urology, and orthopedic limb surgeries. INTERVENTIONS: Patients were randomly assigned 1:1 to the endotracheal intubation or laryngeal mask group. MEASUREMENTS: LUS scores were recorded across 12 lung regions at baseline, 15 min after airway establishment, at the end of surgery, and 30 min following airway removal. Outcome measures encompassed the oxygenation index, dynamic lung compliance, incidence of postoperative pulmonary complications, throat pain, and other postoperative complications assessed at 24 and 48 h postoperatively. The primary outcome focused on the LUS score in all 12 lung regions at 15 min after airway establishment. MAIN RESULTS: Intention-to-treat analysis of 177 subjects revealed endotracheal intubation led to significantly higher LUS scores at 15 min {P < 0.001, mean difference 4.15 ± 0.60, 95% CI [2.97, 5.33]}, end of surgery (P < 0.001, mean difference 3.37 ± 0.68, 95% CI [2.02, 4.72]), and 30 min post-removal (P < 0.001, mean difference 2.63 ± 0.48, 95% CI [1.68, 3.58]). No major complications occurred in the two groups. CONCLUSIONS: Compared to endotracheal intubation, laryngeal masks effectively reduce atelectasis formation and progression in gynecological, urological non-laparoscopic, and orthopedic limb surgeries. However, caution is warranted when generalizing these findings to surgeries with a higher risk of laryngeal mask leakage or obese patients. Additionally, the efficacy of laryngeal masks in reducing postoperative atelectasis remains uncertain when comprehensive monitoring of muscle relaxation and reversal therapy is employed.

12.
Acta Diabetol ; 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39090426

RÉSUMÉ

AIMS: Diabetic retinopathy (DR) results from complex genetic and metabolic interactions. Unraveling the links between blood metabolites and DR can advance risk prediction and therapy. METHODS: Leveraging Mendelian Randomization (MR) and Linkage Disequilibrium Score Regression (LDSC), we analyzed 10,413 DR cases and 308,633 controls. Data was sourced from the Metabolomics GWAS server and the FinnGen project. RESULTS: Our research conducted a comprehensive MR analysis across 486 serum metabolites to investigate their causal role in DR. After stringent selection and validation of instrumental variables, we focused on 480 metabolites for analysis. Our findings revealed 38 metabolites potentially causally associated with DR. Specifically, 4-androsten-3beta,17beta-diol disulfate 2 was identified as significantly associated with a reduced risk of DR (OR = 0.471, 95% CI = 0.324-0.684, p = 7.87 × 10- 5), even after rigorous adjustments for multiple testing. Sensitivity analyses further validated the robustness of this association, and linkage disequilibrium score regression analyses showed no significant genetic correlation between this metabolite and DR, suggesting a specific protective effect against DR. CONCLUSIONS: Our study identifies 4-androsten-3beta,17beta-diol disulfate 2, a metabolite of androgens, as a significant protective factor against diabetic retinopathy, suggesting androgens as potential therapeutic targets.

13.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189162, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39089484

RÉSUMÉ

T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.

14.
Mikrochim Acta ; 191(9): 542, 2024 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-39153097

RÉSUMÉ

As an ideal transition metal oxide, Co3O4 is a P-type semiconductor with excellent electrical conductivity, non-toxicity and low cost. This work reports the successful construction of Co3O4 materials derived from metal-organic frameworks (MOFs) using a surfactant micelle template-solvothermal method. The modified electrodes are investigated for their ability to electrochemically detect Pb2+ and Cu2+ in aqueous environments. By adjusting the mass ratios of alkaline modifiers, the morphological microstructures of Co3O4-X exhibit a transition from distinctive microspheres composed of fiber stacks to rods. The results indicate that Co3O4-1(NH4F/CO(NH2)2 = 1:0) has a distinctive microsphere structure composed of stacked fibers, unlike the other two materials. Co3O4-1/GCE is used as the active material of the modified electrode, it shows the largest peak response currents to Pb2+ and Cu2+, and efficiently detects Pb2+ and Cu2+ in the aqueous environment individually and simultaneously. The linear response range of Co3O4-1/GCE for the simultaneous detection of Pb2+ and Cu2+ is 0.5-1.5 µM, with the limits of detection (LOD, S/N = 3) are 9.77 nM and 14.97 nM, respectively. The material exhibits a favorable electrochemical response, via a distinctive Co3O4-1 microsphere structure composed of stacked fibers. This structure enhances the number of active adsorption sites on the material, thereby facilitating the adsorption of heavy metal ions (HMIs). The presence of oxygen vacancies (OV) can also facilitate the adsorption of ions. The Co3O4-1/GCE electrode also exhibits excellent anti-interference ability, stability, and repeatability. This is of great practical significance for detecting Pb2+ and Cu2+ in real water samples and provides a new approach for developing high-performance metal oxide electrochemical sensors derived from MOFs.

15.
Adv Sci (Weinh) ; : e2404194, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39119933

RÉSUMÉ

Electrochemical conversion of nitrate (NO3 -) to ammonia (NH3) is a potential way to produce green NH3 and remediate the nitrogen cycle. In this paper, an efficient catalyst of spherical CuO made by stacking small particles with oxygen-rich vacancies is reported. The NH3 yield and Faraday efficiency are 15.53 mg h-1 mgcat -1 and 90.69%, respectively, in a neutral electrolyte at a voltage of -0.80 V (vs. reversible hydrogen electrode). The high activity of the electrodes results from changes in the phase and structure during electrochemical reduction. Structurally, there is a shift from a spherical structure with dense accumulation of small particles to a layered network structure with uniform distribution of small particles stacked on top of each other, thus exposing more active sites. Furthermore, in terms of phase, the electrode transitions from CuO to Cu/Cu(OH)2. Density functional theory calculations showed that Cu(OH)2 formation enhances NO3- adsorption. Meanwhile, the Cu(OH)2 can inhibit the competing hydrogen evolution reaction, while the formation of Cu (111) crystal surfaces facilitates the hydrogenation reaction. The synergistic effect between the two promotes the NO3- to NH3. Therefore, this study provides a new idea and direction for Cu-based oxides in electrocatalytic NH3 production.

16.
Clin Respir J ; 18(8): e70001, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39187923

RÉSUMÉ

INTRODUCTION: Low body weight in patients with COPD is associated with a poor prognosis and more comorbidities. However, the impact of increased body weight in patients with COPD remains controversial. The aim of this study was to explore the clinical features of overweight patients with AECOPD. METHODS: In this multicenter cross-sectional study, a total of 647 AECOPD patients were recruited. Finally, 269 normal weight and 162 overweight patients were included. Baseline characteristics and clinical and laboratory data were collected. The least absolute shrinkage and selection operator (LASSO) regression was performed to determine potential features, which were substituted into binary logistic regression to reveal overweight-associated clinical features. The nomogram and its associated curves were established to visualize and verify the logistic regression model. RESULTS: Six potential overweight-associated variables were selected by LASSO regression. Subsequently, a binary logistic regression model identified that the rates of type 2 diabetes (T2DM) and hypertension and levels of lymphocytes (LYM)%, and alanine aminotransferase (ALT) were independent variables of overweight in AECOPD patients. The C-index and AUC of the ROC curve of the nomogram were 0.671 and 0.666, respectively. The DCA curve revealed that the nomogram had more clinical benefits if the threshold was at a range of 0.22~0.78. CONCLUSIONS: Collectively, we revealed that T2DM and hypertension were more common, and LYM% and ALT were higher in AECOPD patients with overweight than those with normal weight. The result suggests that AECOPD patients with overweight are at risk for additional comorbidities, potentially leading to worse outcomes.


Sujet(s)
Diabète de type 2 , Surpoids , Broncho-pneumopathie chronique obstructive , Humains , Broncho-pneumopathie chronique obstructive/épidémiologie , Broncho-pneumopathie chronique obstructive/complications , Broncho-pneumopathie chronique obstructive/physiopathologie , Mâle , Femelle , Surpoids/complications , Surpoids/épidémiologie , Études transversales , Sujet âgé , Adulte d'âge moyen , Diabète de type 2/complications , Diabète de type 2/épidémiologie , Nomogrammes , Évolution de la maladie , Hypertension artérielle/épidémiologie , Hypertension artérielle/complications , Comorbidité , Pronostic , Modèles logistiques , Facteurs de risque , Courbe ROC
17.
Langmuir ; 40(35): 18619-18630, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39163208

RÉSUMÉ

Al/Ni energetic structural material with both high strength structural properties and high energy release functional properties can undergo a strong exothermic reaction under heating or impact loading conditions. In order to investigate the influence of microstructure on the mechanical properties and energy release characteristics of the Al/Ni energetic structural material, the materials with different Ni contents were prepared by cold spraying. With the increase of Ni particles, the microstructure inside the energetic structural material gradually changes from a continuous network structure of Al to a continuous network structure of Ni. The contact between Ni particles will make the stress transfer more uniform during the compression process of the energetic structural material, which enhances their strength. The results of heat-induced exothermic and shock-induced energy release show that the Al/Ni energetic structural material exhibits the best exothermic performance when Ni particles are uniformly dispersed and there are enough Al and Ni to make the material completely transform into the AlNi phase. The increase in the contact interface between Al and Ni particles facilitates the occurrence of a solid/solid reaction exothermic reaction between Al and Ni as well as the diffusion of Ni into the Al melt to generate the AlNi phase. The formation of the Ni continuous phase will lead to a reduction in the contact interface between Al and Ni, as well as an increase in porosity, which will result in a decrease in the amount of heat released during the diffusion reaction. This study will provide insights into the preparation of an Al/Ni energetic structural material with excellent properties.

18.
Endocr Relat Cancer ; 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39162682

RÉSUMÉ

This study provides a comprehensive analysis of global, continental, and national trends in the prevalence and mortality of prostate cancer (PC), breast cancer (BC), and thyroid cancer (TC). Utilizing 2021 Global Burden of Diseases (GBD2021) data, prevalence and death rates for 2021 were examined, with temporal trends from 1990 to 2021 analyzed via Joinpoint regression. Annual percentage change (APC) and average APC (AAPC) were calculated with 95% confidence intervals (CI). Distributive inequalities were quantified using the slope index of inequality and concentration index. In 2021, PC, BC, and TC showed higher global age-standardized prevalence rates (ASPR) in Europe and America compared to Africa and Asia, while higher age-standardized death rates (ASDR) for PC and BC were noted in Africa. Over the study period, significant global increases in ASPR were observed for PC (AAPC = 0.78, 95% CI: 0.67 to 0.89), BC (AAPC = 0.31, 95% CI: 0.24 to 0.37), and TC (AAPC = 1.42, 95% CI: 1.31 to 1.52). Conversely, ASDR significantly decreased for PC (AAPC = -0.83, 95% CI: -0.92 to -0.74), BC (AAPC = -0.48, 95% CI: -0.56 to -0.39), and TC (AAPC = -0.23, 95% CI: -0.29 to -0.17). Variations were observed across continents and time periods, affecting 204 countries and territories. higher social development index (SDI) levels were associated with a more pronounced burden of these cancers. The findings highlight significant global heterogeneity in prevalence, death rates, and temporal trends of endocrine cancers, with important implications for epidemiology and public health policies.

19.
World J Diabetes ; 15(8): 1802-1810, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39192850

RÉSUMÉ

BACKGROUND: Gestational diabetes mellitus (GDM) is characterized by glucose intolerance that is first diagnosed during pregnancy, making it the most common complication associated with this period. Early detection and targeted treatment of GDM can minimize foetal exposure to maternal hyperglycaemia and subsequently reduce the associated adverse pregnancy outcomes. Previous studies have inconsistently suggested that the level of glycated albumin (GA) might predict GDM. AIM: To review and synthesize existing evidence to evaluate the relationship between GA levels and the development of GDM. METHODS: We sought to compare GA levels between GDM and control groups in this meta-analysis by systematically searching the Web of Science, PubMed, Cochrane Library, and Embase databases for articles published up to June 2023. The analysis utilized the weighted mean difference (WMD) as the primary metric. The data were meticulously extracted, and the quality of the included studies was assessed. Additionally, we conducted a subgroup analysis based on study region and sample size. We assessed heterogeneity using I 2 statistics and evaluated publication bias through funnel plots. Additionally, trim-and-fill analysis was employed to detect and address any potential publication bias. RESULTS: The meta-analysis included a total of 11 studies involving 5477 participants, comprising 1900 patients with GDM and 3577 control individuals. The synthesized results revealed a notable correlation between elevated GA levels and increased susceptibility to GDM. The calculated WMD was 0.42, with a 95% confidence interval (95%CI) ranging from 0.11 to 0.74, yielding a P value less than 0.001. Concerning specific GA levels, the mean GA level in the GDM group was 12.6, while for the control group, it was lower, at 11.6. This discrepancy underscores the potential of GA as a biomarker for assessing GDM risk. Moreover, we explored the levels of glycated haemoglobin (HbA1c) in both cohorts. The WMD for HbA1c was 0.19, with a 95%CI ranging from 0.15 to 0.22 and a P value less than 0.001. This observation suggested that both GA and HbA1c levels were elevated in individuals in the GDM group compared to those in the control group. CONCLUSION: Our meta-analysis revealed a substantial correlation between elevated GA levels and increased GDM risk. Furthermore, our findings revealed elevated levels of HbA1c in GDM patients, emphasizing the significance of monitoring both GA and HbA1c levels for early GDM detection and effective management.

20.
Bioorg Med Chem ; 112: 117878, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39167979

RÉSUMÉ

Chemical RNA modification has emerged as a flexible approach for post-synthetic modifications in chemical biology research. Guide RNA (gRNA) plays a crucial role in the clustered regularly interspaced short palindromic repeats and associated protein system (CRISPR-Cas). Several toolkits have been developed to regulate gene expression and editing through modifications of gRNA. However, conditional regulation strategies to control gene editing in cells as required are still lacking. In this context, we introduce a strategy employing a cyclic disulfide-substituted acylating agent to randomly acylate the 2'-OH group on the gRNA strand. The CRISPR-Cas systems demonstrate off-on transformation activity driven by redox-triggered disulfide cleavage and undergo intramolecular cyclization, which releases the functionalized gRNA. Dithiothreitol (DTT) exhibits superior reductive capabilities in cleaving disulfides compared to glutathione (GSH), requiring fewer reductants. This acylation method with cyclic disulfides enables conditional control of CRISPR-Cas9, CRISPR-Cas13a, RNA hybridization, and aptamer folding. Our strategy facilitates precise in vivo control of gene editing, making it particularly valuable for targeted applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE