Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 538
Filtrer
1.
Plant Physiol Biochem ; 213: 108808, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38865805

RÉSUMÉ

The development of the mining industry and the overuse of inorganic fertilizers have led to an excess of manganese (Mn) in the soil, thereby, contaminating the soil environment and people's health. On heavy metal-contaminated soils, the combined arbuscular mycorrhizal fungi (AMF)-phytoremediation technique becomes a hotspot because of its environmentally friendly, in situ remediation. AMF inoculation often leads to a decrease in host Mn acquisition, which provides a basis for its application in phytoremediation of contaminated soils. Moreover, the utilization value of native AMF is greater than that of exotic AMF, because native AMF can adapt better to Mn-contaminated soils. In addition to the fact that AMF enhance plant Mn tolerance responses such as regionalization, organic matter chelation, limiting uptake and efflux, and so on, AMF also develop plant-independent fungal pathways such as direct biosorption of Mn by mycorrhizal hyphae, fungal Mn transporter genes, and sequestration of Mn by mycorrhizal hyphae, glomalin, and arbuscule-containing root cortical cells, which together mitigate excessive Mn toxicity to plants. Clarifying AMF-plant interactions under Mn stress will provide support for utilizing AMF as a phytoremediation in Mn-contaminated soils. The review reveals in detail how AMF develop its own mechanisms for responding to excess Mn and how AMF enhance plant Mn tolerance, accompanied by perspectives for future research.


Sujet(s)
Dépollution biologique de l'environnement , Manganèse , Mycorhizes , Plantes , Mycorhizes/métabolisme , Mycorhizes/physiologie , Manganèse/métabolisme , Manganèse/toxicité , Plantes/métabolisme , Plantes/effets des médicaments et des substances chimiques , Plantes/microbiologie , Polluants du sol/toxicité , Polluants du sol/métabolisme , Racines de plante/microbiologie , Racines de plante/métabolisme , Racines de plante/effets des médicaments et des substances chimiques
2.
Environ Sci Technol ; 58(25): 11185-11192, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38869092

RÉSUMÉ

Electrocatalytic hydrogen atom-hydroxyl radical (H*-·OH) redox system is a promising approach for contaminant removal and mineralization. However, its working mechanism, especially the effect of H*, remains unclear, hindering its practical application. Herein, we constructed an electrochemical reactor equipped with our self-made Pd-loaded Ti/TiO2 nanotube cathode and a commercial boron-doped diamond anode. After fulfilling the electrode characterization and free radical detection, we employed coumarin and 7-azido-4-methylcoumarin as probes to confirm the participation of H* in the transformation of organic compounds. A comprehensive study on the degradation kinetics, reaction, and mineralization mechanisms using benzoic acid (BA) and 4-chlorophenol (4-CP) as model compounds was further conducted. The rate constants and total organic carbon removal of BA and 4-CP in the redox system increased compared with those of the individual oxidation and reduction processes. Theoretical calculations demonstrate that H* opens up alternative pathways for BA and 4-CP ring cleavage, forming quinones as reactive intermediates. Furthermore, H* facilitates the mineralization of the typical intermediates, maleic acid and fumaric acid, through C=C bond addition and H-abstraction from the 1,1-diol structure. The presence of H* provides alternative pathways for pollutant transformation, consequently reducing the treatment duration.


Sujet(s)
Hydrogène , Oxydoréduction , Hydrogène/composition chimique , Cinétique
3.
Zool Res ; 45(4): 781-790, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-38894521

RÉSUMÉ

Precise targeting of specific regions within the central nervous system (CNS) is crucial for both scientific research and gene therapy in the context of brain diseases. Adeno-associated virus 13 (AAV13) is known for its restricted diffusion range within the CNS, making it an ideal choice for precise labeling and administration within small brain regions. However, AAV13 mediates relatively low expression of target genes. Here, we introduced specifically engineered modifications to the AAV13 capsid protein to enhance its transduction efficiency. We first constructed AAV13-YF by mutating tyrosine to phenylalanine on the surface of the AAV13 capsid. We then inserted the 7m8 peptide, known to enhance cell transduction, into positions 587/588 and 585/586 of the AAV13 capsid, resulting in two distinct variants named AAV13-587-7m8 and AAV13-585-7m8, respectively. We found that AAV13-YF exhibited superior in vitro infectivity in HEK293T cells compared to AAV13, while AAV13-587-7m8 and AAV13-585-7m8 showed enhanced CNS infection capabilities in C57BL/6 mice, with AAV13-587-7m8 infection retaining a limited spread range. These modified AAV13 variants hold promising potential for applications in gene therapy and neuroscience research.


Sujet(s)
Dependovirus , Souris de lignée C57BL , Dependovirus/génétique , Animaux , Humains , Souris , Cellules HEK293 , Transduction génétique , Protéines de capside/génétique , Protéines de capside/métabolisme
4.
Plant J ; 2024 Jun 23.
Article de Anglais | MEDLINE | ID: mdl-38923085

RÉSUMÉ

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.

5.
Macromol Rapid Commun ; : e2400339, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38925556

RÉSUMÉ

Chirality is ubiquitous in nature, and closely related to biological phenomena. Nature-originated nanomaterials such as cellulose nanocrystals (CNCs) are able to self-assemble into hierarchical chiral nematic CNC films and impart handedness to nano and micro scale. However, the effects of the chiral nematic surfaces on cell adhesion are still unknown. Herein, this work presents evidence that the left-handed self-assembled chiral nematic CNC films (L-CNC) significantly improve the adhesion of L929 fibroblasts compared to randomly arranged isotropic CNC films (I-CNC). The fluidic force microscopy-based single-cell force spectroscopy is introduced to assess the cell adhesion forces on the substrates of L-CNC and I-CNC, respectively. With this method, a maximum adhesion force of 133.2 nN is quantified for mature L929 fibroblasts after culturing for 24 h on L-CNC, whereas the L929 fibroblasts exert a maximum adhesion force of 78.4 nN on I-CNC under the same condition. Moreover, the instant SCFS reveals that the integrin pathways are involved in sensing the chirality of substrate surfaces. Overall, this work offers a starting point for the regulation of cell adhesion via the self-assembled nano and micro architecture of chiral nematic CNC films, with potential practical applications in tissue engineering and regenerative medicine.

6.
Chembiochem ; : e202400334, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38925610

RÉSUMÉ

Hydrogels are commonly used as wound dressings to help maintain a moist environment around the wound and isolate contaminants, thus promoting healing. For irregular wounds, the slow healing process and even infection may occur due to the inability of dressings to adhere well to the wound. Prussian blue (PB) is a metal-organic framework (MOF) material with excellent photothermal conversion and superior stability. In this paper, a kind of near-infrared (NIR) light triggered in-situ polymerized antimicrobial hydrogel was prepared. The free radical initiator was encapsulated in the hollow PB by a phase change material (PCM) to maintain stability. The raised temperature triggered by NIR induced the release and decomposition of the initiator. The matrix was formed by the cross-linking of double bonds on modified chitosan. The quaternary amine groups of modified chitosan and the photothermal properties of PB enhanced the antimicrobial properties of the hydrogel. High-quality wound healing was demonstrated in the whole skin defect model. This study provides a new reference for the preparation of in-situ polymerized hydrogel dressings for irregular wounds.

7.
Heliyon ; 10(11): e32409, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38933950

RÉSUMÉ

Identification of novel biomarkers for prediction of disease course and prognosis is needed to reduce morbidity of liver hepatocellular carcinoma (LIHC/HCC) patients. Although dysregulated Periodic tryptophan protein 1 homolog (PWP1/endonuclein) expression has been detected in several tumors, the potential regulatory effect of PWP1 on LIHC remains uncertain. Here we evaluated the expression of PWP1 using multiple online platforms, and demonstrated that PWP1 upregulation was consistently observed in LIHC relative to non-tumor liver tissues and correlated with unfavorable prognosis. Moreover, HCC prognosis was significantly influenced by the methylation status of various CpG sites in the PWP1 gene. Lastly, we provide direct evidence that PWP1 acts as a driver of HCC progression by showing that siRNA-mediated PWP1 silencing significantly suppressed HCC cell proliferation in vitro. These data strongly suggest that PWP1 silencing may be an effective therapeutic strategy to treat LIHC.

8.
Animals (Basel) ; 14(12)2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38929335

RÉSUMÉ

Species recognition is a crucial part of understanding the abundance and distribution of various organisms and is important for biodiversity conservation and management. Traditional vision-based deep learning-driven species recognition requires large amounts of well-labeled, high-quality image data, the collection of which is challenging for rare and endangered species. In addition, recognition methods designed based on specific species have poor generalization ability and are difficult to adapt to new species recognition scenarios. To address these issues, zero-shot species recognition based on Contrastive Language-Image Pre-training (CLIP) has become a research hotspot. However, previous studies have primarily utilized visual descriptive information and taxonomic information of species to improve zero-shot recognition performance, and the use of geographic distribution characteristics of species to improve zero-shot recognition performance has not been explored. To fill this gap, we proposed a CLIP-driven zero-shot species recognition method that incorporates knowledge of the geographic distribution of species. First, we designed three prompts based on the species geographic distribution statistical data. Then, the latitude and longitude coordinate information attached to each image in the species dataset was converted into addresses, and they were integrated together to form the geographical distribution knowledge of each species. Finally, species recognition results were derived by calculating the similarity after acquiring features by the trained CLIP image encoder and text encoder. We conducted extensive experiments on multiple species datasets from the iNaturalist 2021 dataset, where the zero-shot recognition accuracies of mammals, mollusks, reptiles, amphibians, birds, and insects were 44.96%, 15.27%, 17.51%, 9.47%, 28.35%, and 7.03%, an improvement of 2.07%, 0.48%, 0.35%, 1.12%, 1.64%, and 0.61%, respectively, as compared to CLIP with default prompt. The experimental results show that the fusion of geographic distribution statistical data can effectively improve the performance of zero-shot species recognition, which provides a new way to utilize species domain knowledge.

9.
Curr Microbiol ; 81(7): 182, 2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38769214

RÉSUMÉ

Fusarium proliferatum is the main pathogen that causes Panax notoginseng root rot. The shortcomings of strong volatility and poor water solubility of Illicium verum essential oil (EO) limit its utilization. In this study, we prepared traditional emulsion (BDT) and nanoemulsion (Bneo) of I. verum EO by ultrasonic method with Tween-80 and absolute ethanol as solvents. The chemical components of EO, BDT, and Bneo were identified by gas chromatography-mass spectrometry (GC-MS) and the antifungal activity and mechanism were compared. The results show that Bneo has good stability and its particle size is 34.86 nm. The contents of (-) -anethole and estragole in Bneo were significantly higher than those in BDT. The antifungal activity against F. proliferatum was 5.8-fold higher than BDT. In the presence of I. verum EO, the occurrence of P. notoginseng root rot was significantly reduced. By combining transcriptome and metabolomics analysis, I. verum EO was found to be involved in the mutual transformation of pentose and glucuronic acid, galactose metabolism, streptomycin biosynthesis, carbon metabolism, and other metabolic pathways of F. proliferatum, and it interfered with the normal growth of F. proliferatum to exert antifungal effects. This study provide a theoretical basis for expanding the practical application of Bneo.


Sujet(s)
Antifongiques , Émulsions , Fusarium , Illicium , Métabolomique , Huile essentielle , Huile essentielle/pharmacologie , Huile essentielle/composition chimique , Fusarium/effets des médicaments et des substances chimiques , Fusarium/génétique , Fusarium/métabolisme , Illicium/composition chimique , Antifongiques/pharmacologie , Antifongiques/métabolisme , Antifongiques/composition chimique , Émulsions/composition chimique , Transcriptome , Chromatographie gazeuse-spectrométrie de masse , Maladies des plantes/microbiologie , Maladies des plantes/prévention et contrôle , Analyse de profil d'expression de gènes
10.
ACS Appl Mater Interfaces ; 16(20): 26025-26033, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38717862

RÉSUMÉ

Bi-Sb-Te-based thermoelectric materials have the best room-temperature thermoelectric properties, but their inherent brittleness and rigidity limit their application in the wearable field. In this study, W-doped p-type Bi0.5Sb1.5Te3 (W-BST) thin films were prepared using magnetron sputtering on polyimide substrates to create thermoelectric generators (TEGs). Bending tests showed that the thin film has excellent flexibility and mechanical durability, meeting the flexible requirements of wearable devices. W doping can significantly increase the carrier concentration, Seebeck coefficient, and electrical conductivity of BST thin films. At 300 K, the power factor of the W-BST film is 2.25 times higher than that of the undoped film, reaching 13.75 µW cm-1 K-2. First-principles calculations showed that W doping introduces significant impurity peaks in the bandgap, in which W d electrons remarkably hybridize with the Sb and Te p electrons, leading to an improved electrical conductivity of BST films. Furthermore, W doping significantly reduces the work function of BST films, thereby improving the carrier mobility. A TEG module fabricated from four layers of W-BST thin films achieved a maximum output power density of 6.91 mW cm-2 at a temperature difference of 60 K. Application tests showed that the flexible TEG module could power a portable clock using the temperature difference between body temperature and room temperature. At a medium temperature of 439 K, the assembled TEG module can provide a stable output voltage of 1.51 V to power a LED. This study demonstrates the feasibility of combining inorganic thermoelectric materials with flexible substrates to create high-performance flexible TEGs.

11.
Animals (Basel) ; 14(7)2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38612345

RÉSUMÉ

The Amur tiger is an important endangered species in the world, and its re-identification (re-ID) plays an important role in regional biodiversity assessment and wildlife resource statistics. This paper focuses on the task of Amur tiger re-ID based on visible light images from screenshots of surveillance videos or camera traps, aiming to solve the problem of low accuracy caused by camera perspective, noisy background noise, changes in motion posture, and deformation of Amur tiger body patterns during the re-ID process. To overcome this challenge, we propose a serial multi-scale feature fusion and enhancement re-ID network of Amur tiger for this task, in which global and local branches are constructed. Specifically, we design a global inverted pyramid multi-scale feature fusion method in the global branch to effectively fuse multi-scale global features and achieve high-level, fine-grained, and deep semantic feature preservation. We also design a local dual-domain attention feature enhancement method in the local branch, further enhancing local feature extraction and fusion by dividing local feature blocks. Based on the above model structure, we evaluated the effectiveness and feasibility of the model on the public dataset of the Amur Tiger Re-identification in the Wild (ATRW), and achieved good results on mAP, Rank-1, and Rank-5, demonstrating a certain competitiveness. In addition, since our proposed model does not require the introduction of additional expensive annotation information and does not incorporate other pre-training modules, it has important advantages such as strong transferability and simple training.

12.
J Agric Food Chem ; 72(18): 10506-10520, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38651833

RÉSUMÉ

Sugarcane response to Sporisorium scitamineum is determined by multiple major genes and numerous microeffector genes. Here, time-ordered gene coexpression networks were applied to explore the interaction between sugarcane and S. scitamineum. Totally, 2459 differentially expressed genes were identified and divided into 10 levels, and several stress-related subnetworks were established. Interestingly, the Ca2+ signaling pathway was activated to establish the response to sugarcane smut disease. Accordingly, two CAX genes (ScCAX2 and ScCAX3) were cloned and characterized from sugarcane. They were significantly upregulated under ABA stress but inhibited by MeJA treatment. Furthermore, overexpression of ScCAX2 and ScCAX3 enhanced the susceptibility of transgenic plants to the pathogen infection, suggesting its negative role in disease resistance. A regulatory model for ScCAX genes in disease response was thus depicted. This work helps to clarify the transcriptional regulation of sugarcane response to S. scitamineum stress and the function of the CAX gene in disease response.


Sujet(s)
Signalisation calcique , Régulation de l'expression des gènes végétaux , Protéines végétales , Saccharum , Ustilaginales , Signalisation calcique/physiologie , Résistance à la maladie/génétique , Maladies des plantes/génétique , Maladies des plantes/microbiologie , Protéines végétales/génétique , Protéines végétales/métabolisme , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/métabolisme , Saccharum/génétique , Saccharum/métabolisme , Ustilaginales/physiologie
13.
Psychol Res Behav Manag ; 17: 813-826, 2024.
Article de Anglais | MEDLINE | ID: mdl-38434961

RÉSUMÉ

Background/Objective: In the post-epidemic era, an increasing number of individuals were accustomed to learning sports and physical activity knowledge online for fitness and health demands. However, most previous studies have examined the influence of e-learning materials and resources on learners and have neglected intrinsic factors such as experience and physiological characteristics. Therefore, we conducted a study to investigate the effect of exercise habits and gender on sports e-learning behavior via eye-tracking technology. Methods: We recruited a sample of 60 undergraduate students (mean age = 19.6) from a university in Nanjing, China. They were randomly assigned into 4 groups based on 2 genders × 2 exercise habits. Their gaze behavior was collected by an eye-tracking device during the experiment. The cognitive Load Test and Learning Effect Test were conducted at the end of the individual experiment. Results: (1) Compared to the non-exercise habit group, the exercise habit group had a higher fixation count (P<0.05), a shorter average fixation duration (P<0.05), a smaller average pupil diameter (P<0.05), and a lower subjective cognitive load (P<0.05) and better learning outcome (P<0.05). (2) Male participants showed a greater tendency to process information from the video area of interest (AOIs), and had lower subjective cognitive load (P < 0.05) and better learning outcomes (P < 0.05). (3) There was no interaction effect between exercise habits and gender for any of the indicators (P > 0.05). Conclusion: Our results indicate that exercise habits effectively enhance sports e-learning outcomes and reduce cognitive load. The exercise habits group showed significant improvements in fixation counts, average fixation duration, and average pupil diameter. Furthermore, male subjects exhibited superior learning outcomes, experienced lower cognitive load, and demonstrated greater attentiveness to dynamic visual information. These conclusions are expected to improve sports e-learning success and address educational inequality.

14.
Acta Pharmacol Sin ; 45(6): 1224-1236, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38467717

RÉSUMÉ

The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.


Sujet(s)
AMP-Activated Protein Kinases , Aconitine , Cardiotoxicité , Histone deacetylases , Animaux , Souris , Cardiotoxicité/métabolisme , Cardiotoxicité/étiologie , Histone deacetylases/métabolisme , AMP-Activated Protein Kinases/métabolisme , Mâle , Humains , Aconitum/composition chimique , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Médicaments issus de plantes chinoises/pharmacologie
16.
ACS Nano ; 18(11): 8107-8124, 2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38442075

RÉSUMÉ

Acute myocardial infarction (MI) and ischemic heart disease are the leading causes of heart failure and mortality. Currently, research on MI treatment is focused on angiogenic and anti-inflammatory therapies. Although endothelial cells (ECs) are critical for triggering inflammation and angiogenesis, no approach has targeted them for the treatment of MI. In this study, we proposed a nonviral combined nucleic acid delivery system consisting of an EC-specific polycation (CRPPR-grafted ethanolamine-modified poly(glycidyl methacrylate), CPC) that can efficiently codeliver siR-ICAM1 and pCXCL12 for the treatment of MI. Animals treated with the combination therapy exhibited better cardiac function than those treated with each nucleic acid alone. In particular, the combination therapy of CPC/siR-ICAM1 and CPC/pCXCL12 significantly improved cardiac systolic function, anti-inflammatory responses, and angiogenesis compared to the control group. In conclusion, CPC-based combined gene delivery systems show impressive performance in the treatment of MI and provide a programmed strategy for the development of codelivery systems for various EC-related diseases.


Sujet(s)
Défaillance cardiaque , Infarctus du myocarde , Animaux , Cellules endothéliales , Infarctus du myocarde/traitement médicamenteux , Endothélium , Anti-inflammatoires/usage thérapeutique
17.
ACS Appl Mater Interfaces ; 16(10): 12321-12331, 2024 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-38431875

RÉSUMÉ

Apart from single hemostasis, antibacterial and other functionalities are also desirable for hemostatic materials to meet clinical needs. Cationic materials have attracted great interest for antibacterial/hemostatic applications, and it is still desirable to explore rational structure design to address the challenges in balanced hemostatic/antibacterial/biocompatible properties. In this work, a series of cationic microspheres (QMS) were prepared by the facile surface modification of microporous starch microspheres with a cationic tannic acid derivate, the coating contents of which were adopted for the first optimization of surface structure and property. Thermoresponsive gels with embedded QMS (F-QMS) were further prepared by mixing a neutral thermosensitive polymer and QMS for second structure/function optimization through different QMS and loading contents. In vitro and in vivo results confirmed that the coating content plays a crucial role in the hemostatic/antibacterial/biocompatible properties of QMS, but varied coating contents of QMS only lead to a classical imperfect performance of cationic materials. Inspiringly, the F-QMS-4 gel with an optimal loading content of QMS4 (with the highest coating content) achieved a superior balanced in vitro hemostatic/antibacterial/biocompatible properties, the mechanism of which was revealed as the second regulation of cell-material/protein-material interactions. Moreover, the optimal F-QMS-4 gel exhibited a high hemostatic performance in a femoral artery injury model accompanied by the easy on-demand removal for wound healing endowed by the thermoresponsive transformation. The present work offers a promising approach for the rational design and facile preparation of cationic materials with balanced hemostatic/antibacterial/biocompatible properties.


Sujet(s)
Hémostatiques , Polyphénols , Hémostatiques/pharmacologie , Hémostatiques/composition chimique , Microsphères , Hémostase , Antibactériens/pharmacologie , Antibactériens/composition chimique , Gels/pharmacologie , Amidon/composition chimique
18.
Front Microbiol ; 15: 1334387, 2024.
Article de Anglais | MEDLINE | ID: mdl-38389528

RÉSUMÉ

Introduction: Norovirus (NoV) is one of the most important agents responsible for viral acute gastroenteritis, among which GII.4 NoV is the predominant strain worldwide, and GII.17 NoV surpassed GII.4 in some epidemic seasons. Rapid and accurate gene recognition is essential for a timely response to NoV outbreaks. Methods: In the present study, the highly conserved regions of GII.4 and GII.17 NoVs were identified in the junction of open reading frame (ORF) 1 and ORF2 and then amplified by isothermal recombinase-aided amplification (RAA), followed by the cleavage of CRISPR-Cas13a with screened CRISPR RNAs (crRNAs) and RAA primers. The entire detection procedure could be completed within 40 min using a thermostat, and the results could be read out by the naked eye under a portable blue light transilluminator. Discussion: The assay showed a high sensitivity of 97.96% and a high specificity of 100.0%. It offered a low limit of detection (LOD) of 2.5×100 copies/reaction and a coincidence rate of 96.75% in 71 clinical fecal samples. Overall, rapid and inexpensive detection of GII.4/GII.17 NoVs was established, which makes it possible to be used in areas with limited resources, particularly in low-income countries. Furthermore, it will contribute to assessing transmission risks and implementing control measures for GII.4/GII.17 NoVs, making healthcare more accessible worldwide.

19.
Adv Healthc Mater ; 13(3): e2301945, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37897223

RÉSUMÉ

Polymer-based hemostatic materials/devices have been increasingly exploited for versatile clinical scenarios, while there is an urgent need to reveal the rational design/facile approach for procoagulant surfaces through regulating blood-material interactions. In this work, degradable powders (PLPS) and thermoresponsive gels (F127-PLPS) are readily developed as promising hemostatic materials for versatile clinical applications, through tuning blood-material interactions with optimized grafting of cationic polylysine: the former is facilely prepared by conjugating polylysine onto porous starch particle, while F127-PLPS is prepared by the simple mixture of PLPS and commercial thermosensitive polymer. In vitro and in vivo results demonstrate that PLPS2 with the optimal-/medium content of polylysine grafts achieve the superior hemostatic performance. The underlying procoagulant mechanism of PLPS2 surface is revealed as the selective fibrinogen adsorption among the competitive plasma-protein-adsorption process, which is the foundation of other blood-material interactions. Moreover, in vitro results confirm the achieved procoagulant surface of F127-PLPS through optimal PLPS2 loading. Together with the tunable thermoresponsiveness, F127-PLPS exhibits outstanding hemostatic utilization in both femoral-artery-injury and renal-artery-embolization models. The work thereby pioneers an appealing approach for generating versatile polymer-based hemostatic materials/devices.


Sujet(s)
Hémostatiques , Polyéthylènes , Polylysine , Polypropylènes , Poudres , Hémostatiques/pharmacologie , Gels , Amidon
20.
Biomater Sci ; 12(3): 581-595, 2024 Jan 30.
Article de Anglais | MEDLINE | ID: mdl-38014423

RÉSUMÉ

Recently, nucleic acid delivery has become an amazing route for the treatment of various malignant diseases, and polycationic vectors are attracting more and more attention among gene vectors. However, conventional polycationic vectors still face many obstacles in nucleic acid delivery, such as significant cytotoxicity, high protein absorption behavior, and unsatisfactory blood compatibility caused by a high positive charge density. To solve these problems, the fabrication of hydroxyl-rich branched polycationic vectors has been proposed. For the synthesis of hydroxyl-rich branched polycations, a one-pot method is considered as the preferred method due to its simple preparation process. In this review, typical one-pot methods for fabricating hydroxyl-rich polycations are presented. In particular, amine-epoxide ring-opening polymerization as a novel approach is mainly introduced. In addition, various therapeutic scenarios of hydroxyl-rich branched polycations via one-pot fabrication are also generalized. We believe that this review will motivate the optimized design of hydroxyl-rich branched polycations for potential nucleic acid delivery and their bio-applications.


Sujet(s)
Acides nucléiques , Vecteurs génétiques , Polyélectrolytes , Techniques de transfert de gènes , Transfection
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...