Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Science ; 377(6603): 302-306, 2022 07 15.
Article de Anglais | MEDLINE | ID: mdl-35737811

RÉSUMÉ

The performance of perovskite solar cells with inverted polarity (p-i-n) is still limited by recombination at their electron extraction interface, which also lowers the power conversion efficiency (PCE) of p-i-n perovskite-silicon tandem solar cells. A MgFx interlayer with thickness of ~1 nanometer at the perovskite/C60 interface favorably adjusts the surface energy of the perovskite layer through thermal evaporation, which facilitates efficient electron extraction and displaces C60 from the perovskite surface to mitigate nonradiative recombination. These effects enable a champion open-circuit voltage of 1.92 volts, an improved fill factor of 80.7%, and an independently certified stabilized PCE of 29.3% for a monolithic perovskite-silicon tandem solar cell ~1 square centimeter in area. The tandem retained ~95% of its initial performance after damp-heat testing (85°C at 85% relative humidity) for >1000 hours.

2.
Science ; 376(6588): 73-77, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-35175829

RÉSUMÉ

If perovskite solar cells (PSCs) with high power conversion efficiencies (PCEs) are to be commercialized, they must achieve long-term stability, which is usually assessed with accelerated degradation tests. One of the persistent obstacles for PSCs has been successfully passing the damp-heat test (85°C and 85% relative humidity), which is the standard for verifying the stability of commercial photovoltaic (PV) modules. We fabricated damp heat-stable PSCs by tailoring the dimensional fragments of two-dimensional perovskite layers formed at room temperature with oleylammonium iodide molecules; these layers passivate the perovskite surface at the electron-selective contact. The resulting inverted PSCs deliver a 24.3% PCE and retain >95% of their initial value after >1000 hours at damp-heat test conditions, thereby meeting one of the critical industrial stability standards for PV modules.

3.
Adv Mater ; 32(32): e2002608, 2020 Aug.
Article de Anglais | MEDLINE | ID: mdl-32613655

RÉSUMÉ

High-quality carrier-selective contacts with suitable electronic properties are a prerequisite for photovoltaic devices with high power conversion efficiency (PCE). In this work, an efficient electron-selective contact, titanium oxynitride (TiOx Ny ), is developed for crystalline silicon (c-Si) and organic photovoltaic devices. Atomic-layer-deposited TiOx Ny is demonstrated to be highly conductive with a proper work function (4.3 eV) and a wide bandgap (3.4 eV). Thin TiOx Ny films simultaneously provide a moderate surface passivation and enable a low contact resistivity on c-Si surfaces. By implementation of an optimal TiOx Ny -based contact, a state-of-the-art PCE of 22.3% is achieved for a c-Si solar cell featuring a full-area dopant-free electron-selective contact. Simultaneously, conductive TiOx Ny is proven to be an efficient electron-transport layer for organic photovoltaic (OPV) devices. A remarkably high PCE of 17.02% is achieved for an OPV device with an electron-transport TiOx Ny layer, which is superior to conventional ZnO-based devices with a PCE of 16.10%. Atomic-layer-deposited TiOx Ny ETL on a large area with a high uniformity may help accelerate the commercialization of emerging solar technologies.

4.
Phys Chem Chem Phys ; 18(27): 18607-13, 2016 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-27346149

RÉSUMÉ

The interface chemistry and evolution of the evaporated perovskite films on ITO, pedot/ITO, Si and glass substrates are studied. As evidenced by X-ray diffraction and X-ray photoemission spectroscopy (XPS) results, the PbI2 phase is found to be inevitably formed at the very initial growth stage, even under the conditions of a MAI-rich environment. The extremely low binding energy of adsorbed MAI particles on all the above substrates, as compared to that of PbI2 particles, is responsible for the presence of the PbI2 phase at the interface. The formation of both hole and electron barriers at the interface of PbI2/MAPbI3, as evidenced by XPS measurements, could block carrier transport into the electrode and thus deteriorate solar cell performance. This result reveals the origin of the poor performance of perovskite solar cells (PSCs) by the vacuum evaporation method, and may help to improve the performance of PSCs made using the vacuum evaporation method.

5.
Opt Express ; 24(8): 8411-9, 2016 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-27137279

RÉSUMÉ

We report a prototypical device of CH3NH3PbCl3 film ultraviolet photodetectors that were fabricated with a coplanar metal-semiconductor-metal Au interdigital electrode configuration. Pure phase CH3NH3PbCl3 films with a good crystallinity were formed by a hybrid sequential deposition process featured with inter-diffusion of PbCl2 and CH3NH3Cl upon annealing. The CH3NH3PbCl3 film photodetector exhibits a high responsivity of 7.56 A /W at 360 nm, a ultraviolet/visible rejection ratio (R360 nm/R500 nm) was about two orders of magnitude and fast response speed with a rising time of 170 µs and a decay time of 220 µs. All the above results demonstrate CH3NH3PbCl3 film photodetector as a competitive candidate in the application of visible blind UV detectors.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...