Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 33
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Small ; : e2404830, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39148204

RÉSUMÉ

The developed strategies for synthesizing metal phosphides are usually cumbersome and pollute the environment. In this work, an ultrafast (30 s) quasi-solid-state microwave approach is developed to construct cobalt-molybdenum phosphide decorated with Ru (Ru/CoxP-MoP) featured porous morphology with interconnected channels. The specific nanostructure favors mass transport, such as electrolyte bubbles transfer and exposing rich active sites. Moreover, the coupling effects between metallic elements, especially the decorated Ru, also act as a pivotal role on enhancing the electrocatalytic performance. Benefiting from the effects of composition and specific nanostructure, the prepared Ru/CoxP-MoP exhibits efficient HER performance with a current density of 10 mA cm-2 achieved in 1 m KOH, 0.5 m H2SO4, seawater containing 1 m KOH and 1 m PBS, with overpotentials of 52, 59, 55, 90 mV, and coupling with good stability. This work opens a novel and fast avenue to design metal-phosphide-based nanomaterials in energy-conversion and storage fields.

2.
Inorg Chem ; 63(33): 15477-15484, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39105705

RÉSUMÉ

Transition-metal phosphides (TMPs) have attracted extensive attention in energy-related fields, especially for electrocatalytic hydrogen evolution reaction (HER). However, it is imperative to develop a facile and time-consuming approach to prepare metal phosphides with satisfactory catalytic performance. Herein, nitrogen-doped CoP-Co2P decorated with Ru (Ru/N-CoP-Co2P) is synthesized (Ru/N-CoP-Co2P) through a hydrothermal route and following an ultrafast and simple microwave avenue within 20 s. The achieved Ru/N-CoP-Co2P possesses an interconnected porous morphology to expose abundant active sites and accelerate the mass transport. Moreover, N doping and Ru-supported decorated Ru/N-CoP-Co2P also play a key role in promoting the electrocatalytic activity. Therefore, the as-designed Ru/N-CoP-Co2P presents good catalytic performance for the HER in a wide pH range. Ru/N-CoP-Co2P merely needs overpotentials of 63, 100, and 65 mV to obtain 10 mA cm-2 in acidic, alkaline, and seawater electrolytes. This research provides a novel and efficient strategy for the synthesis of TMPs with highly efficient catalytic activity.

3.
Nanoscale ; 16(29): 14057-14065, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-38994556

RÉSUMÉ

As a technology for emerging environmental applications, water electrolysis is a significant approach for producing clean hydrogen energy. In this work, we used an efficacious piezoelectric method to significantly improve the catalytic water splitting activity without affecting the morphology as well as the components by altering the bulk charge separation state inside the material. The obtained CuCo2O4 nanorods were treated under a corona polarization apparatus, which significantly enhanced ferroelectricity relative to that before the polarization increasing the physical charge separation and piezoelectric potential energy, enhancing the green hydrogen production. The polarized CuCo2O4 nanorods exhibit excellent water electrolysis performance under alkaline conditions, with hydrogen evolution overpotential of 78.7 mV and oxygen evolution overpotential of 299 mV at 10 mA cm-2, which is much better than that of unpolarized CuCo2O4 nanorods. Moreover, the Tafel slopes of polarized CuCo2O4 nanorods are 86.9 mV dec-1 in the HER process and 73.1 mV dec-1 in the OER process, which are much lower than commercial catalysts of Pt/C (88.0 mV dec-1 for HER) or RuO2 (78.5 mV dec-1 for OER), proving faster kinetic on polarized CuCo2O4 nanorods due to their higher electroconductibility and intrinsic activity. In particular, polarized CuCo2O4 nanorods are identified as promising catalysts for water electrolysis with robust stability, offering outstanding catalytic performance and excellent energy efficiency.

4.
J Colloid Interface Sci ; 669: 856-863, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38749224

RÉSUMÉ

Developing electrocatalysts with high activity and durability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in both acidic and alkaline electrolytes remains challenging. In this study, we synthesize a self-supported ruthenium-iron oxide on carbon cloth (Ru-Fe-Ox/CC) using solvothermal methods followed by air calcination. The morphology of the nanoparticle exposes numerous active sites vital for electrocatalysis. Additionally, the strong electronic interaction between Ru and Fe enhances electrocatalytic kinetics optimization. The porous structure of the carbon cloth matrix facilitates mass transport, improving electrolyte penetration and bubble release. Consequently, Ru-Fe-Ox/CC demonstrates excellent catalytic performance, achieving low overpotentials of 32 mV and 28 mV for HER and 216 mV and 228 mV for OER in acidic and alkaline electrolytes, respectively. Notably, only 1.48 V and 1.46 V are required to reach 10 mA cm-2 for efficient water-splitting in both mediums, exhibiting remarkable stability. This research offers insights into designing versatile, highly efficient catalysts suitable for varied pH conditions.

5.
Small ; 20(10): e2306341, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-37903360

RÉSUMÉ

Pd-based electrocatalysts are the most effective catalysts for ethylene glycol oxidation reaction (EGOR), while the disadvantages of poor stability, low resistance to neutrophilic, and low catalytic activity seriously hamper the development of direct ethylene glycol fuel cells (DEGFCs). In this work, defect-riched PdCoZn nanosheets (D-PdCoZn NSs) with ultrathin 2D NSs and porous structures are fabricated through the solvothermal and alkali etching processes. Benefiting from the presence of defects and ultrathin 2D structures, D-PdCoZn NSs demonstrate excellent electrocatalytic activity and good durability against EGOR in alkaline media. The mass activity and specific activity of D-PdCoZn NSs for EGOR are 9.5 A mg-1 and 15.7 mA cm-2 , respectively, which are higher than that of PdCoZn NSs, PdCo NSs, and Pd black. The D-PdCoZn NSs still maintain satisfactory mass activity after long-term durability tests. Meanwhile, in situ IR spectroscopy demonstrates that the presence of defects attenuated the adsorption of intermediates, which improves the selectivity of the C1 pathway with excellent anti-CO poisoning performance. This work not only provides an effective synthetic strategy for the preparation of Pd-based nanomaterials with defective structures but also indicates significant guidance for optimum C1 pathway selectivity of ethylene glycol and other challenging chemical transformations.

6.
Adv Mater ; 36(13): e2311018, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38101817

RÉSUMÉ

Anionic modification engineering is a crucial approach to develop highly efficient electrocatalysts for hydrogen evolution reaction. Herein, halogen elements (X = Cl, Br, and I)-modified Ru-based nanosheets (X-Ru/RuP2) are designed by rapid and eco-friendly microwave-phosphide plasma approach within 60 s. Experimental and density functional theory calculations verify that the introduced halogen element, especially Br, can optimize the surface intermediates adsorption. Specially, the designed Br-Ru/RuP2 favors the water dissociation and following hydrogen adsorption/desorption process. Then, the as-synthesized Br-Ru/RuP2 exhibits low overpotential of 34 mV to reach 10 mA cm-2 coupled with small Tafel slope of 27 mV dec-1 in alkaline electrolyte with excellent long-term stability. Moreover, the electrocatalytic performances in acid and neutral media are also boosted via Br element modification. This work paves a novel way to regulate the electronic structure of Ru-based compounds, and then can boost the electrocatalytic kinetics.

7.
Inorg Chem ; 62(51): 21508-21517, 2023 Dec 25.
Article de Anglais | MEDLINE | ID: mdl-38064289

RÉSUMÉ

Transition metal phosphides are ideal inexpensive electrocatalysts for water-splitting, but the catalytic activity still falls behind that of noble metal catalysts. Therefore, developing valid strategies to boost the electrocatalytic activity is urgent to promote large-scale applications. Herein, a microwave combustion strategy (20 s) is applied to synthesize N-doped CoP/Ni2P heterojunctions (N-CoP/Ni2P) with porous structure. The porous structure expands the specific surface area and accelerates the mass transport efficiency. Importantly, the pyrrolic N/pyridinic N content is adjusted by changing the amount of urea during the synthesis process and then optimizing the adsorption/desorption capacity for H*/OH* to enhance the catalyst activity. Then, the synthesized N-CoP/Ni2P exhibits small overpotentials of 111 and 133 mV for HER in acidic and alkaline electrolytes and 290 mV for OER in alkaline electrolytes. This work provides an original and efficient approach to the synthesis of porous metal phosphides.

8.
Inorg Chem ; 62(41): 17012-17021, 2023 Oct 16.
Article de Anglais | MEDLINE | ID: mdl-37791743

RÉSUMÉ

Efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) are required for producing hydrogen energy through water splitting. Carbon materials as HER catalyst supports are explored widely since the strong metal-support interactions are generally believed to be active and stable toward HER. Herein, we report N-doped porous carbon materials as novel substrates to stabilize the cluster metal sites through the Ru(III) polyamine complexes, which play an important role not only in efficient electron transfer but also in the increasing utilization of metallic active sites. Meanwhile, due to the strong metal-support interactions driven by Ru(III) polyamine complexes, the obtained Ru cluster with a mass loading of 3% on N-doped porous carbon nanoplates (Ru cluster@NCs) exhibits robust stability for HER at a constant voltage, proving to be a promising candidate catalyst for HER. Density functional theory calculations further indicate that the Gibbs free energy (ΔG) of adsorbed H* of Ru cluster@NCs is much closer to zero compared to Ru@(10%)NCs and Pt/C(20%), thus Ru cluster@NCs facilitate the HER process.

9.
Small ; 19(52): e2305343, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37635101

RÉSUMÉ

Design high-loading with superior activity and high atomic efficiency has consistently been a new frontier of heterogeneous catalysis while challenging in synthetic technology. In this work, a universal solid-state strategy is proposed for large scalable production of high-loading Ir clusters on porous hollow carbon nanobowls (Ir CSs/PHCNBs). The strong electronic interaction between metallic Ir cluster and C on PHCNBs leads to electron redistribution, which significantly improves the electron transfer rate on the interface. The obtained Ir CSs/PHCNBs only require overpotentials of 35, 34, and 37 mV for the hydrogen evolution reaction (HER) with stable outputting of 10 mA cm-2 under acidic, alkaline, and neutral conditions, respectively, which exceeds the state-of-the-art HER electrocatalysts. Meanwhile, the Tafel slopes of Ir CSs/PHCNBs for the HER process are 23.07, 48.76, and 28.95 mV dec-1 , greatly lower than that of PHCNBs (152.73, 227.96, and 140.29 mV dec-1 ) and commercial Pt/C (20%) (36.33, 66.10, and 36.61 mV dec-1 ). These results provide a new strategy for the universal synthesis of clusters catalysts and insight into understanding the interface effects between clusters and carbon substrate, facilitating the industrial application of hydrogen production.

10.
Inorg Chem ; 62(24): 9687-9694, 2023 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-37267518

RÉSUMÉ

Molybdenum phosphide (MoP) has received increasing attention for the hydrogen evolution reaction (HER) due to its Pt-like electronic structure and high electrical conductivity. In this work, a flake-like Ru-doped MoP with phosphorus vacancy (Ru-MoP-PV) electrocatalyst is synthesized for the first time by a simple and rapid room-temperature microwave approach within 30 s. The created abundant phosphorus vacancies provide rich active sites and favor rapid electron transfer. The introduced Ru also enhances the catalytic activity of the synthesized electrocatalyst efficiently. Then, the designed Ru-MoP-PV possesses low overpotentials for HER with 79, 100, and 161 mV in 1.0 M KOH, 0.5 M H2SO4, and 1.0 M phosphate-buffered saline to obtain 10 mA cm-2. The Ru-MoP-PV and NiFe-layered double hydroxide are used as the cathode and the anode, respectively, to drive water splitting and just need a low cell voltage of 1.6 V to achieve 10 mA cm-2. This work provides a feasible way for the rapid production of metal phosphides for energy conversion and storage applications.

11.
J Colloid Interface Sci ; 646: 391-398, 2023 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-37207421

RÉSUMÉ

Developing a facile and time-saving method for preparing hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts can accelerate the practical applications of hydrogen energy. In this study, halogen (X = F, Cl, Br and I) doped Ru-RuO2 on carbon cloth (CC) (X-Ru-RuO2/MCC) was synthesized via an ultrafast microwave-assisted method for 30 s. Particularly, the doped Br (Br-Ru-RuO2/MCC) significantly improved the electrocatalytic performances of the catalyst through the regulation of electronic structures. Then, the Br-Ru-RuO2/MCC catalyst featured HER overpotentials of 44 mV and 77 mV in 1.0 M KOH and 0.5 M H2SO4, and the OER overpotential of 300 mV at 10 mA cm-2 in 1.0 M KOH. This study provides a novel method for developing of halogen-doped catalysts.

12.
Angew Chem Int Ed Engl ; 62(14): e202300406, 2023 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-36754865

RÉSUMÉ

Oxygen vacancies-enriched black TiO2 is one promising support for enhancing hydrogen evolution reaction (HER). Herein, oxygen vacancies enriched black TiO2 supported sub-nanometer Pt clusters (Pt/TiO2 -OV ) with metal support interactions is designed through solvent-free microwave and following low-temperature electroless approach for the first time. High-temperature and strong reductants are not required and then can avoid the aggregation of decorated Pt species. Experimental and theoretical calculation verify that the created oxygen vacancies and Pt clusters exhibit synergistic effects for optimizing the reaction kinetics. Based on it, Pt/TiO2 -OV presents remarkable electrocatalytic performance with 18 mV to achieve 10 mA cm-2 coupled with small Tafel slope of 12 mV dec-1 . This work provides quick synthetic strategy for preparing black titanium dioxide based nanomaterials.

13.
Small Methods ; 7(1): e2201225, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36549895

RÉSUMÉ

The electrocatalytic nitrogen reduction reaction (NRR) is emerging as a great promise for ambient and sustainable NH3 production while it still suffers from the high adsorption energy of N2 , the difficulty of *NN protonation, and inevitable hydrogen evolution, leading to a great challenge for efficient NRR. Herein, we synthesized a series of amorphous trimetal Pd-based (PdCoM (M = Cu, Ag, Fe, Mo)) nanosheets (NSs) with an ultrathin 2D structure, which shows high efficiency and robust electrocatalytic nitrogen fixation. Among them, amorphous PdCoCu NSs exhibit excellent NRR activity at low overpotentials with an NH3 yield of 60.68 µg h-1 mgcat -1 and a corresponding Faraday efficiency of 42.93% at -0.05 V versus reversible hydrogen electrode as well as outstanding stability with only 5% decrease after a long test period of 40 h at room temperature. The superior NRR activity and robust stability should be attributed to the large specific surface area, abundant active sites as well as structural engineering and electronic effect that boosts up the Pd 4d band center, which further efficiently restrains the hydrogen evolution. This work offers an opportunity for more energy conversion devices through the novel strategy for designing active and stable catalysts.


Sujet(s)
Ammoniac , Électronique , Adsorption , Électrodes , Hydrogène , Azote
14.
Drug Deliv ; 27(1): 1360-1368, 2020 Dec.
Article de Anglais | MEDLINE | ID: mdl-32985911

RÉSUMÉ

Food protein and polysaccharide complex emulsions are safe carriers of hydrophobic drugs and nutrients. To improve oral bioavailability and therapeutic/healthy efficacy of hydrophobic drugs and nutrients, herein, protamine (PRO), a cationic cell-penetrating peptide, was introduced into protein and polysaccharide complex emulsion. The electrostatic complex of PRO and BSA-dextran conjugate (BD) produced by Maillard reaction was used as emulsifier to produce oil-in-water emulsion (@BD/PRO). The BSA molecules were crosslinked at the oil-water interface by a heat treatment and the PRO chains were simultaneously anchored in the interface. BD emulsion (@BD) without PRO was produced for comparation. Paclitaxel (PTX), a hydrophobic antineoplastic drug, was encapsulated in the emulsions with 99% loading efficiency and 6.4% loading capacity. The emulsions had long-term stability. The bioavailability and H22 tumor inhibition efficacy of PTX@BD/PRO were 40% and 70% higher than those of PTX@BD, respectively, after oral administration in the mice. More importantly, orally administrated PTX@BD/PRO had the same anti-tumor efficacy as intravenously injected commercial PTX injection. No abnormality was observed in the main organs of the mice after consecutive oral administration of PTX@BD/PRO. This study indicates that @BD/PRO is an excellent carrier of hydrophobic drugs/nutrients and is suitable for long-term oral administration.


Sujet(s)
Antinéoplasiques d'origine végétale/administration et posologie , Dextrane/administration et posologie , Tube digestif/effets des médicaments et des substances chimiques , Paclitaxel/administration et posologie , Protamine/administration et posologie , Sérumalbumine bovine/administration et posologie , Administration par voie orale , Animaux , Antinéoplasiques d'origine végétale/métabolisme , Biodisponibilité , Dextrane/métabolisme , Vecteurs de médicaments/administration et posologie , Vecteurs de médicaments/métabolisme , Tube digestif/métabolisme , Mâle , Souris , Souris de lignée ICR , Tumeurs/traitement médicamenteux , Tumeurs/métabolisme , Paclitaxel/métabolisme , Protamine/métabolisme , Sérumalbumine bovine/métabolisme , Résultat thérapeutique , Tests d'activité antitumorale sur modèle de xénogreffe/méthodes
15.
Nanoscale ; 12(21): 11526-11535, 2020 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-32432270

RÉSUMÉ

Water electrolysis is an environmentally friendly and sustainable technique for ultra-pure hydrogen production, while expensive electrode materials and high driving voltage have seriously hindered its commercialization process. Here, Earth-abundant bifunctional porous Ni2P hollow nanotubes on nickel foam (Ni2P-HNTs/NF) electrocatalysts are synthesized through a facile self-template method and a phosphating process, which are perfectly combined with the hydrazine electrooxidation reaction (HzOR) boosted water electrolysis. Benefiting from the unique structural characteristic of open-framework and abundant step atoms, Ni2P-HNTs/NF achieves 10 mA cm-2 at 91 mV (vs. RHE) for the cathodic hydrogen evolution reaction and 18 mV (vs. RHE) for the anodic HzOR in a three electrode system, respectively. The corresponding two-electrode hydrazine electrolyzer produces 10 mA cm-2 with a total voltage of only 152 mV for ultra-pure hydrogen production, highlighting a cost-effective and energy-saving water electrolysis mode.

16.
Nanoscale ; 11(28): 13477-13483, 2019 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-31287477

RÉSUMÉ

Direct ethanol fuel cells (DEFCs) with a high conversion efficiency are quite promising candidates for energy conversion devices. Herein, we have successfully synthesized PdCo alloy nanocubes supported on carbon nanobowl (denoted as Pd2Co1/CNB) nanohybrids by using the cyanogel auto-reduction method at high temperature. The morphology, composition and structure of Pd2Co1/CNB nanohybrids are characterized in detail, revealing that PdCo nanocubes have a high alloying degree and special {110} facets. In cyclic voltammetry measurements, Pd2Co1/CNB nanohybrids show a mass activity of 1089.0 A g Pd-1 and a specific activity of 40.03 mA cm-2 for ethanol electrooxidation at peak potential, which are much higher than that of the commercial Pd/C electrocatalyst (278.2 A gPd-1 and 8.22 mA cm-2). Additionally, chronoamperometry measurements show that Pd2Co1/CNB nanohybrids have excellent durability for ethanol electrooxidation. A high alloying degree, special {110} facets and the CNB supporting material contribute to the high activity and durability of Pd2Co1/CNB nanohybrids, making them a highly promising Pt-alternative electrocatalyst for ethanol electrooxidation in DEFCs.

17.
Colloids Surf B Biointerfaces ; 170: 136-143, 2018 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-29894834

RÉSUMÉ

Liver is the major organ where insulin performs its physiological function. In this study, lauric acid and oleic acid were respectively conjugated to quaternized chitosan, and the fatty acid modified chitosan derivatives were used as the carriers to deliver the loaded insulin to liver. The nanoparticles with sizes of about 280 nm were fabricated via the electrostatic and hydrophobic interactions between insulin and the chitosan derivative. Both of insulin loading efficiency and loading capacity of the chitosan derivatives were higher than 98%. The surface hydrophobicity of the nanoparticles increased with the increases of fatty acid hydrophobicity and also fatty acid substitution degree of the chitosan derivative. The nanoparticles with higher surface hydrophobicity displayed higher hepatocyte absorption, more accumulation in the liver and better antidiabetic efficacy. Compared with free insulin treatment group, the relative pharmacological availabilities were 233% and 311% for the groups treated with the nanoparticles having lauric acid and oleic acid, respectively, after subcutaneous injection into diabetic mice. This study demonstrates that the nanoparticles fabricated from fatty acid modified polymer are an effective liver-targeted delivery system of insulin.


Sujet(s)
Chitosane/composition chimique , Diabète expérimental/traitement médicamenteux , Vecteurs de médicaments/composition chimique , Acides gras/composition chimique , Hypoglycémiants/usage thérapeutique , Insuline/usage thérapeutique , Composés d'ammonium quaternaire/composition chimique , Absorption physiologique/effets des médicaments et des substances chimiques , Administration par voie orale , Animaux , Systèmes de délivrance de médicaments , Cellules HepG2 , Hépatocytes/effets des médicaments et des substances chimiques , Humains , Interactions hydrophobes et hydrophiles , Hypoglycémiants/administration et posologie , Hypoglycémiants/composition chimique , Insuline/administration et posologie , Insuline/composition chimique , Mâle , Souris , Souris de lignée ICR , Nanoparticules/composition chimique , Taille de particule , Propriétés de surface
18.
Drug Deliv ; 25(1): 1224-1233, 2018 Nov.
Article de Anglais | MEDLINE | ID: mdl-29791242

RÉSUMÉ

Liver is the primary acting site of insulin. In this study, we developed innovative nanoparticles for oral and liver-targeted delivery of insulin by using enterohepatic circulation of bile acids. The nanoparticles were produced from cholic acid and quaternary ammonium modified chitosan derivative and hydroxypropyl methylcellulose phthalate (HPMCP). The nanoparticles had a diameter of 239 nm, an insulin loading efficiency of 90.9%, and a loading capacity of 18.2%. Cell culture studies revealed that the cholic acid groups effectively enhanced the transport of the nanoparticles through Caco-2 cell monolayer and greatly increased the absorption of the nanoparticles in HepG-2 cells via bile acid transporter mechanism. Ex vivo fluorescence images of ileum section, gastrointestinal tract, and liver demonstrated that the HPMCP increased the mucoadhesion of the nanoparticles in ileum, and the cholic acid groups facilitated the absorptions of the nanoparticles in both ileum and liver by use of bile acid transporters via enterohepatic circulation of bile acids. The therapy for diabetic mice displayed that the oral nanoparticle group could maintain hypoglycemic effect for more than 24 h and its pharmacological availability was about 30% compared with the insulin injection group. For the first time, this study demonstrates that using enterohepatic circulation of bile acids is an effective strategy for oral delivery of insulin.


Sujet(s)
Acides et sels biliaires/métabolisme , Circulation entérohépatique/effets des médicaments et des substances chimiques , Insuline/pharmacologie , Foie/effets des médicaments et des substances chimiques , Nanoparticules/composition chimique , Animaux , Glycémie/effets des médicaments et des substances chimiques , Cellules Caco-2 , Lignée cellulaire tumorale , Chitosane/composition chimique , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Vecteurs de médicaments/composition chimique , Systèmes de délivrance de médicaments/méthodes , Femelle , Cellules HepG2 , Humains , Hypoglycémiants/composition chimique , Hypoglycémiants/pharmacologie , Insuline/composition chimique , Foie/métabolisme , Mâle , Méthylcellulose/analogues et dérivés , Méthylcellulose/composition chimique , Souris de lignée ICR
19.
Sci Rep ; 8(1): 3563, 2018 02 23.
Article de Anglais | MEDLINE | ID: mdl-29476076

RÉSUMÉ

Kinase-family with sequence similarity 20, member C (Fam20C) is a protein kinase, which can phosphorylate biomineralization related proteins in vertebrate animals. However, the function of Fam20C in invertebrate animals especially the role in biomineralization is still unknown. Herein, we cloned the cDNA of fam20C from the pearl oyster, Pinctada fucata. It is showed that the expression of fam20C in the mantle edge was much higher than other tissues. In situ hybridization showed that fam20C was expressed mostly in the outer epithelial cells of the middle fold, indicating it may play important roles in the shell formation. Besides, fam20C expression increased greatly in the D-shape stage of pearl oyster development, when the shell was first formed. During the shell repair process, the expression level of fam20C increased 1.5 times at 6 h after shell notching. Knockdown of fam20C in vivo by RNA interference resulted in abnormally stacking of calcium carbonate crystals at the edges of nacre tablets, showing direct evidence that fam20C participates in the shell formation. This study provides an insight into the role of kinase protein in the shell formation in mollusk and broaden our understanding of biomineralization mechanism.


Sujet(s)
Coquilles d'animaux/croissance et développement , Calcification physiologique/génétique , Casein kinase I/génétique , Pinctada/génétique , Animaux , Biominéralisation/génétique , Protéines de liaison au calcium/génétique , Clonage moléculaire , ADN complémentaire/génétique , Protéines de la matrice extracellulaire/génétique , Régulation de l'expression des gènes au cours du développement , Techniques de knock-down de gènes , Hybridation in situ , Pinctada/croissance et développement , Transport des protéines/génétique , Interférence par ARN
20.
Int J Pharm ; 530(1-2): 53-62, 2017 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-28739501

RÉSUMÉ

In this study, glycol chitosan-Pluronic F127 conjugate (GC-PF127), produced by an amidation reaction between terminal-carboxylated PF127 and glycol chitosan (GC), was used to prepare doxorubicin (DOX)-loaded micelles. The DOX/GC-PF127 micelles produced at optimal conditions had sizes of about 150nm and pH-sensitive surface charges. DOX/GC-PF127 hydrogel formed after addition of α-cyclodextrin into DOX/GC-PF127 micelle solution. The hydrogel had good shear-responsive, injectable and rapid recovery properties. In vitro release experiment confirmed that the hydrogel could sustainedly release DOX/GC-PF127 micelles via the dissociation of the hydrogel. After peritumoral injection into H22 tumor-bearing mice, the hydrogel could greatly increase DOX accumulation in tumor tissue and synchronously avoid DOX accumulation in normal tissues including heart. At similar total DOX dose administrated, the tumors of free DOX treatment group grew slowly after thrice intravenous injections, the tumors of the micelle group did not grow after twice intravenous injections, and the tumors of the hydrogel group disappeared almost after once peritumoral injection. This study demonstrates that injectable DOX/GC-PF127 hydrogel, which can sustainedly release DOX-loaded micelles with tumor-targeting function, is a promising system for local tumor chemotherapy.


Sujet(s)
Doxorubicine/administration et posologie , Hydrogels/composition chimique , Micelles , Tumeurs expérimentales/traitement médicamenteux , Animaux , Antinéoplasiques/administration et posologie , Lignée cellulaire tumorale , Chitosane/composition chimique , Cellules HepG2 , Humains , Concentration en ions d'hydrogène , Mâle , Souris , Souris de lignée ICR , Poloxamère/composition chimique , Rat Sprague-Dawley
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE