Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 277
Filtrer
1.
Int Immunopharmacol ; 138: 112452, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38943972

RÉSUMÉ

Peripheral nerve injury seriously endangers human life and health, but there is no clinical drug for the treatment of peripheral nerve injury, so it is imperative to develop drugs to promote the repair of peripheral nerve injury. Erythropoietin (EPO) not only has the traditional role of promoting erythropoiesis, but also has a tissue-protective effect. Over the past few decades, researchers have confirmed that EPO has neuroprotective effects. However, side effects caused by long-term use of EPO limited its clinical application. Therefore, EPO derivatives with low side effects have been explored. Among them, ARA290 has shown significant protective effects on the nervous system, but the biggest disadvantage of ARA290, its short half-life, limits its application. To address the short half-life issue, the researchers modified ARA290 with thioether cyclization to generate a thioether cyclized helical B peptide (CHBP). ARA290 and CHBP have promising applications as peptide drugs. The neuroprotective effects they exhibit have attracted continuous exploration of their mechanisms of action. This article will review the research on the role of EPO, ARA290 and CHBP in the nervous system around this developmental process, and provide a certain reference for the subsequent research.

2.
J Org Chem ; 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38822472

RÉSUMÉ

An efficient and chemodivergent synthesis of highly functionalized 1,4-dihydropyridazines and pyrazoles has been accomplished via base-promoted annulation between hydrazones and alkyl 2-aroyl-1-chlorocyclopropanecarboxylates, respectively. This transition-metal-free domino reaction proceeded rapidly under mild basic conditions, affording potentially bioactive 1,4-dihydropyridazine and pyrazole derivatives in moderate yields. The conversion of 1,4-dihydropyridazine to pyrazole was confirmed by adjusting the quantity of the base.

3.
J Xray Sci Technol ; 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38875073

RÉSUMÉ

BACKGROUND: The polychromatic X-rays generated by a linear accelerator (Linac) often result in noticeable hardening artifacts in images, posing a significant challenge to accurate defect identification. To address this issue, a simple yet effective approach is to introduce filters at the radiation source outlet. However, current methods are often empirical, lacking scientifically sound metrics. OBJECTIVE: This study introduces an innovative filter design method that optimizes filter performance by balancing the impact of ray intensity and energy on image quality. MATERIALS AND METHODS: Firstly, different spectra under various materials and thicknesses of filters were obtained using GEometry ANd Tracking (Geant4) simulation. Subsequently, these spectra and their corresponding incident photon counts were used as input sources to generate different reconstructed images. By comprehensively comparing the intensity differences and noise in images of defective and non-defective regions, along with considering hardening indicators, the optimal filter was determined. RESULTS: The optimized filter was applied to a Linac-based X-ray computed tomography (CT) detection system designed for identifying defects in graphite materials within high-temperature gas-cooled reactor (HTR), with defect dimensions of 2 mm. After adding the filter, the hardening effect reduced by 22%, and the Defect Contrast Index (DCI) reached 3.226. CONCLUSION: The filter designed based on the parameters of Average Difference (AD) and Defect Contrast Index (DCI) can effectively improve the quality of defect images.

4.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1251-1259, 2024 May.
Article de Chinois | MEDLINE | ID: mdl-38886423

RÉSUMÉ

Species richness plays an important role in ecosystem stability and health. Mycorrhizal type is an important factor affecting ecological processes. How mycorrhizal types affect understory herb species richness and their responses to environmental changes remain largely unknown. We investigated the effects of mycorrhizal types on species richness and their responses to environmental change in understory herbaceous communities based on data of three mycorrhizal types of dominated trees (including 1604 arbuscular mycorrhiza (AM) trees, 4654 ectomycorrhiza (ECM) trees, and 5568 AM+ECM trees) and environmental factors in America. The results showed significant differences in species richness of herbaceous plant communities among different mycorrhizal types. Forests with higher dominance of AM plants tended to have higher herbaceous plant richness, supporting the mycorrhizal mediation hypothesis. The impacts of environmental factors (latitude, temperature, precipitation, nitrogen deposition, and soil characteristics) on species richness of herbaceous plant communities depended on mycorrhizal type of forests. The species richness of understory herbs in AM, ECM, and AM+ECM forests was mostly affected by nitrogen deposition, temperature, and soil pH, with the relative importance of 42.3%, 41.1% and 48.7%, respectively. Mycorrhizal types of dominant trees played a vital role in regulating the species richness of understory herbs and influenced their responses to environmental changes.


Sujet(s)
Biodiversité , Écosystème , Forêts , Mycorhizes , Arbres , Mycorhizes/classification , Mycorhizes/physiologie , Arbres/croissance et développement , Arbres/microbiologie , Arbres/classification , Chine , Dynamique des populations
5.
Front Public Health ; 12: 1381786, 2024.
Article de Anglais | MEDLINE | ID: mdl-38903594

RÉSUMÉ

Background: To reduce the burden of patients' medical care, the Xuzhou Municipal Government has initiated an exploratory study on the supply model and categorized management of nationally negotiated drugs. This study aims to understand the extent to which Xuzhou's 2021 reform of the National Drug Price Negotiation (NDPN) policy has had a positive impact on the healthcare costs of individuals with different types of health insurance. Methods: The Interrupted Time Series Analysis method was adopted, and the changes in average medical expenses per patient, average medical insurance payment cost per patient and actual reimbursement ratio were investigated by using the data of single-drug payments in Xuzhou from October 2020 to October 2022. Results: Following the implementation of the policy, there was a significant decrease in the average medical expenses per patient of national drug negotiation in Xuzhou, with a reduction of 62.42 yuan per month (p < 0.001). Additionally, the average medical insurance payment cost per patient decreased by 44.13 yuan per month (p = 0.01). Furthermore, the average medical expenses per patient of urban and rural medical insurance participants decreased by 63.45 yuan (p < 0.001), and the average monthly medical insurance payment cost per patient decreased by 57.56 yuan (p < 0.04). However, the mean total medical expenditures for individuals enrolled in employee medical insurance decreased by 63.41 yuan per month (p < 0.001), whereas the monthly decrease was 22.11 yuan per month (p = 0.21). On the other hand, there was no discernible change in the actual reimbursement ratio. Conclusion: After the adoption of the NDPN policy, a noticeable decline has been observed in the average medical expenses per patient and the mean cost of the average medical insurance payment per patient, although to a limited extent. Notably, the reduction in employee medical insurance surpasses that of urban and rural medical insurance.


Sujet(s)
Coûts des médicaments , Dépenses de santé , Analyse de série chronologique interrompue , Négociation , Humains , Chine , Coûts des médicaments/statistiques et données numériques , Dépenses de santé/statistiques et données numériques , Réforme des soins de santé/économie , Assurance maladie/économie , Assurance maladie/statistiques et données numériques , Politique de santé
6.
Sci Total Environ ; 940: 173589, 2024 Aug 25.
Article de Anglais | MEDLINE | ID: mdl-38823715

RÉSUMÉ

Green hydrogen generated via water electrolysis using photovoltaics or wind has begun to scale up in the process of achieving the global net-zero goal, but there is a lack of research on its impact on the scarcity of water resources and water saving potential. A water resources impact assessment framework for green hydrogen scale-up development is established, integrating the product water footprint and regional water footprint scarcity impacts and advancing the study of the water resources impacts on green hydrogen from water conservation as well as from a sustainable context. The research framework specifies the cradle-to-gate life cycle water consumption of hydrogen production, establishes the water scarcity footprint based on the available water remaining (AWARE) model, quantifies the water saving intensity and potential of the green hydrogen alternative to traditional hydrogen production, and proposes quantitative indicators of the water saving benefit. Taking the regions of 31 provinces in China as a case study, the wind-to­hydrogen scenario and the solar-to­hydrogen scenario will generate approximately 68.86×108 m3 and 126.10×108 m3 water scarcity footprints, respectively. Under the coal-to­hydrogen baseline scenario, approximately 1.68×108 m3 and - 0.57×108 m3 of water saving potential will be generated. In addition, the water saving intensity decreases from west to east. According to the adjusted quantitative indicators of water saving benefits, the wind-to­hydrogen scenario in China can reach 40.22×108 m3eq and the water saving benefit is more obvious in northern regions such as Hebei, Ningxia and Inner Mongolia. The methodological framework can be applied to other countries or regions to assess the sustainable impacts of green hydrogen production on water resources in a given region.

7.
Zhongguo Gu Shang ; 37(6): 6295-34, 2024 Jun 25.
Article de Chinois | MEDLINE | ID: mdl-38910389

RÉSUMÉ

As one of the common traumatic diseases in clinical practice, peripheral nerve injury (PIN) often causes nerve pain, abnormal reflexes, autonomic disorders, and even sensorimotor disorders due to the slow regeneration rate after injury, which seriously affects body function. Even as the gold standard of treatment, autologous nerve transplantation has limitations such as limited donor area and donor injury, which greatly limits its clinical application effect. Therefore, the preparation of artificial nerve grafts suitable for clinical practice has become the future development trend of peripheral nerve injury treatment, and the repair of injury defects and the promotion of nerve regeneration have also become research hotspots in tissue engineering and regenerative medicine. In recent years, extensive research has been carried out on nerve guidance conduits (NGCs) in the field of nerve regeneration and repair, in which scaffold materials and internal fillers have also become the focus of research as the core elements of neural catheters, and a series of achievements have been made in the application of new materials, embedding stem cells/precursor cells, and developing trophic factors and drug-loaded sustained-release systems. Therefore, this paper focuses on the application progress of hydrogel and its related derivative materials in the field of peripheral nerve injury repair, and provides new ideas for promoting the related research of tissue engineering and clinical medicine.


Sujet(s)
Hydrogels , Régénération nerveuse , Lésions des nerfs périphériques , Lésions des nerfs périphériques/thérapie , Lésions des nerfs périphériques/chirurgie , Humains , Régénération nerveuse/effets des médicaments et des substances chimiques , Animaux , Ingénierie tissulaire/méthodes
8.
Adv Healthc Mater ; : e2400884, 2024 May 03.
Article de Anglais | MEDLINE | ID: mdl-38701326

RÉSUMÉ

Bacterial infection, inflammation, and excessive oxidative stress are the primary factors that contribute to delayed healing of skin wounds. In this study, a multifunctional wound dressing (SF/Ag@rGO hydrogel) is developed to promote the healing of infected skin wounds by combining the inherent antibacterial activity of Ag nanoparticles (NPs) with near-infrared (NIR)-assisted antibacterial therapy. Initially, L-ascorbic acid is used as a reducing agent and PVP-K17 as a stabilizer and dispersant, this facilitates the synthesis of reduced graphene oxide loaded with Ag NPs (Ag@rGO). Ag@rGO is then blended with a silk fibroin (SF) solution to form an instantly gelling SF/Ag@rGO hydrogel that exhibits rapid self-healing, injectability, shape adaptability, NIR responsiveness, antioxidant, high tissue adhesion, and robust mechanical properties. In vitro and in vivo experiments show that the SF/Ag@rGO hydrogel demonstrates strong antioxidant and photothermal antibacterial capabilities, promoting wound healing through angiogenesis, stimulating collagen generation, alleviating inflammation, antioxidant, and promoting cell proliferation, indicating that the SF/Ag@rGO hydrogel dressing is an ideal candidate for clinical treatment of full-thickness bacterial-stained wounds.

9.
J Cell Mol Med ; 28(10): e18397, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38766687

RÉSUMÉ

Malignant insulinoma is an extremely rare type of functioning pancreatic neuroendocrine tumour with a high degree of malignancy and a high incidence of metastasis. However, it is still unclear how malignant insulinomas develop and metastasize. Serum amyloid P component (SAP), a member of the pentraxin protein family, is an acute-phase protein secreted by liver cells. The role of SAP in insulinoma and the related mechanism are still unknown. To determine the effect of SAP on insulinoma, we crossed Rip1-Tag2 mice, which spontaneously develop insulinoma, and SAP knockout (KO) mice to generate Rip1-Tag2;SAP-/- mice. We found that SAP deletion significantly promoted the growth, invasion and metastasis of malignant insulinoma through C-X-C motif chemokine ligand 12 (CXCL12) secreted by cancer-associated fibroblasts (CAFs). Further study showed that SAP deletion promoted CXCL12 secretion by CAFs through the CXCR4/p38/ERK signalling pathway. These findings reveal a novel role and mechanism of SAP in malignant insulinoma and provide direct evidence that SAP may be a therapeutic agent for this disease.


Sujet(s)
Chimiokine CXCL12 , Insulinome , Système de signalisation des MAP kinases , Souris knockout , Récepteurs CXCR4 , Animaux , Insulinome/métabolisme , Insulinome/anatomopathologie , Insulinome/génétique , Chimiokine CXCL12/métabolisme , Chimiokine CXCL12/génétique , Récepteurs CXCR4/métabolisme , Récepteurs CXCR4/génétique , Souris , Fibroblastes associés au cancer/métabolisme , Fibroblastes associés au cancer/anatomopathologie , Tumeurs du pancréas/métabolisme , Tumeurs du pancréas/anatomopathologie , Tumeurs du pancréas/génétique , p38 Mitogen-Activated Protein Kinases/métabolisme , Délétion de gène , Évolution de la maladie , Humains , Lignée cellulaire tumorale , Prolifération cellulaire
10.
J Environ Manage ; 359: 120987, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38692029

RÉSUMÉ

The removal of organic pollutants in water environments and the resource utilization of solid waste are two pressing issues around the world. Facing the increasing pollution induced by discharge of mining effluents containing sodium isopropyl xanthate (SIPX), in this work, municipal solid waste incineration fly ash (MSWI FA) was pretreated by hydrothermal method to produce stabilized FA, which was then innovatively used as support for the construction of FA/TiO2/BiOCl nanocomposite (FTB) with promoted photocatalytic activity under visible light and natural sunlight. When the content of FA was 20 wt% and the mass ratio of TiO2 to BiOCl was 4:6, a remarkable performance for the optimal FTB (20-FTB-2) was achieved. Characterizations demonstrated that TiO2 and BiOCl uniformly dispersed on FA contributing to high surface area and broad light adsorption of FTB, which exhibits excellent adsorption capacity and light response ability. Build in electric field formed in the interface of TiO2/BiOCl heterojunction revealed by density functional theory calculations accelerated the separation of photoinduced e- and h+, leading to high efficiency for SIPX degradation. The synergetic effect combined with adsorption and photocatalytic degradation endowed 20-FTB-2 superior SIPX removal efficiency over 99% within 30 min under visible light and natural sunlight irradiation. The photocatalytic degradation pathways of SIPX were determined through theoretical calculations and characterizations, and the toxic byproduct CS2 was effectively eliminated through oxidation of •O2-. For 20-FTB-2, reusability of photocatalyst was showed by cycle tests, also the concentrations of main heavy metals (Pb, Zn, Cu, Cr, and Cd) in the liquid phases released during photocatalyst preparation process (< 1 mg/L) and photodegradation process (< 8.5 µg/L) proved the satisfactory stability with low toxicity. This work proposed a novel strategy to develop efficient and stable support-based photocatalysts by utilizing MSWI FA and realize its resource utilization.


Sujet(s)
Cendre de charbon , Nanocomposites , Titane , Nanocomposites/composition chimique , Titane/composition chimique , Cendre de charbon/composition chimique , Catalyse , Adsorption , Déchets solides , Polluants chimiques de l'eau/composition chimique
11.
Macromol Rapid Commun ; : e2400235, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38742492

RÉSUMÉ

Compared with normal stimulus such as light and heat, ultrasonic possesses much deeper penetration into tissues and organs and has lower scattering in heterogeneous systems as a noninvasive stimulus. Reversible addition-fragmentation chain-transfer polymerization (RAFT) in aqueous media is performed in a commercial ultrasonic wash bath with 40 kHz frequency ultrasonic, in the presence of piezoelectric tetragonal BaTiO3 (BTO) nanoparticles. Owing to the electron transfer from BTO under the ultrasonic action, the water can be decomposed to produce hydroxyl radical (HO•) and initiate the RAFT polymerization (piezo-RAFT). The piezo-RAFT polymerization exhibits features of controllable and livingness, such as linear increase of molar mass and narrow molar mass distributions (Mw/Mn < 1.20). Excellent temporal control of the polymerization and the chain fidelity of polymers are illustrated by "ON and OFF" experiment and chain extension, separately. Moreover, this ultrasonic-driven piezoelectric-induced RAFT polymerization in aqueous media can be directly used for the preparation of piezoelectric hydrogel which have potential application for stress sensor.

12.
Chin J Traumatol ; 2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38734563

RÉSUMÉ

The Masquelet technique, also known as the induced membrane technique, is a surgical technique for repairing large bone defects based on the use of a membrane generated by a foreign body reaction for bone grafting. This technique is not only simple to perform, with few complications and quick recovery, but also has excellent clinical results. To better understand the mechanisms by which this technique promotes bone defect repair and the factors that require special attention in practice, we examined and summarized the relevant research advances in this technique by searching, reading, and analysing the literature. Literature show that the Masquelet technique may promote the repair of bone defects through the physical septum and molecular barrier, vascular network, enrichment of mesenchymal stem cells, and high expression of bone-related growth factors, and the repair process is affected by the properties of spacers, the timing of bone graft, mechanical environment, intramembrane filling materials, artificial membrane, and pharmaceutical/biological agents/physical stimulation.

13.
Heliyon ; 10(9): e30901, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38774103

RÉSUMÉ

Recent advances have revealed that the role of the immune system is prominent in the antitumor response. In the present study, it is aimed to provide an expression profile of tumor-infiltrating lymphocytes (TILs), including mature B cells, plasma cells, and their clinical relevance in neuroblastoma. The expression of CD20 and CD138 was analyzed in the Cangelosi786 dataset (n = 769) as a training dataset and in our cohort (n = 120) as a validation cohort. CD20 high expression was positively associated with favorable overall survival (OS) and event-free survival (EFS) (OS: P < 0.001; EFS: P < 0.001) in the training dataset, whereas CD138 high expression was associated with poor OS and EFS (OS: P < 0.001; EFS: P < 0.001) in both the training and validation datasets. Accordingly, a combined pattern of CD20 and CD138 expression was developed, whereby neuroblastoma patients with CD20highCD138low expression had a consistently favorable OS and EFS compared with those with CD20lowCD138high expression in both the training and validation cohorts (P < 0.0001 and P < 0.01, respectively). Examination of potential molecular functions revealed that signaling pathways, including cytokine‒cytokine receptor interactions, chemokine, and the NF-kappa B signaling pathways, were involved. Differentially expressed genes, such as BMP7, IL7R, BIRC3, CCR7, CXCR5, CCL21, and CCL19, predominantly play important roles in predicting the survival of neuroblastoma patients. Our study proposes that a new combination of CD20 and CD138 signatures is associated with neuroblastoma patient survival. The related signaling pathways reflect the close associations among the number of TILs, cytokine abundance and patient outcomes and provide therapeutic insights into neuroblastoma.

14.
Plant Physiol ; 195(3): 2406-2427, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38588053

RÉSUMÉ

Plants undergo various age-dependent changes in leaf morphology during juvenile to adult vegetative stage. However, the precise molecular mechanisms governing these changes in apple (Malus domestica) remain unknown. Here, we showed that CYTOKININ OXIDASE/DEHYDROGENASE5 (MdCKX5), an age-dependent gene, encodes a functional CKX enzyme and serves as the common downstream target of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MdSPL14 and WRKY transcription factor MdWRKY24 to control the degradation of cytokinin (CK). As the target of mdm-microRNA156a, MdSPL14 interacts with MdWRKY24 to coordinately repress the transcription of MdCKX5 by forming the age-mediated mdm-miR156a-MdSPL14-MdWRKY24 module, which regulates age-dependent changes in CK during the juvenile-to-adult phase transition. We further demonstrated that MdARR6, a type-A ARABIDOPSIS RESPONSE REGULATOR (ARR), is a negative feedback regulator in the CK signaling pathway. Silencing of MdARR6 in apple resulted in large leaves with smaller epidermal cells and a greater number of epidermal cells. Biochemical analysis showed that the mdm-miR156a-MdSPL14-MdWRKY24 module acts as a transcriptional repressor to directly regulate MdARR6 expression, thus controlling the age-dependent changes in leaf size by reducing CK responses. These findings established a link between the age pathway and CK signaling and revealed the molecular mechanism underlying age-dependent changes during the juvenile-to-adult phase transition; our results also provide targets for the genetic improvement of the vegetative phase transition in apple.


Sujet(s)
Cytokinine , Régulation de l'expression des gènes végétaux , Malus , Feuilles de plante , Protéines végétales , Malus/génétique , Malus/croissance et développement , Malus/métabolisme , Malus/anatomie et histologie , Feuilles de plante/génétique , Feuilles de plante/anatomie et histologie , Feuilles de plante/croissance et développement , Feuilles de plante/métabolisme , Cytokinine/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , microARN/génétique , microARN/métabolisme , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Oxidoreductases/métabolisme , Oxidoreductases/génétique , Transduction du signal
15.
Adv Sci (Weinh) ; 11(25): e2400856, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38666467

RÉSUMÉ

Water evaporation-induced electricity generators (WEGs) are regarded as one of the most promising solutions for addressing the increasingly severe environmental pollution and energy crisis. Owing to the potential carbon emission in the preparation process of WEGs, whether WEG represents a clean electricity generation technology is open to question. Here, a brand-new strategy is proposed for manufacturing negative carbon emission WEG (CWEG). In this strategy, the microalgae film is used as the electricity generation interface of WEG, which achieves a stable open-circuit voltage (Voc) of 0.25 V and a short-circuit current (Isc) of 3.3 µA. Since microalgae can capture carbon dioxide during its growing process, CWEG holds great promise to generate electricity without carbon emissions in the full life cycle compared with other WEGs. To the best of the author's knowledge, this is the first work using microalgae films to fabricate WEG. Therefore, it is believed that this work not only provides a new direction for designing high-efficiency and eco-friendly WEG but also offers an innovative approach to the resource utilization of microalgae.

17.
Heliyon ; 10(8): e29523, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38665566

RÉSUMÉ

The advancement of artificial intelligence (AI) and the ubiquity of social media have become transformative agents in contemporary educational ecosystems. The spotlight of this inquiry focuses on the nexus between AI and social media usage in relation to academic performance and mental well-being, and the role of smart learning in facilitating these relationships. Using partial least squares-structural equation modeling (PLS-SEM) on a sample of 401 Chinese university students. The study results reveal that both AI and social media have a positive impact on academic performance and mental well-being among university students. Furthermore, smart learning serves as a positive mediating variable, amplifying the beneficial effects of AI and social media on both academic performance and mental well-being. These revelations contribute to the discourse on technology-enhanced education, showing that embracing AI and social media can have a positive impact on student performance and well-being.

18.
Mol Med Rep ; 29(5)2024 05.
Article de Anglais | MEDLINE | ID: mdl-38551163

RÉSUMÉ

Endothelial barrier disruption plays a key role in the pathophysiology of heat stroke (HS). Knockout of DNAJA1 (DNAJA1­KO) is thought to be protective against HS based on a genome­wide CRISPR­Cas9 screen experiment. The present study aimed to illustrate the function of DNAJA1­KO against HS in human umbilical vein endothelial cells. DNAJA1­KO cells were infected using a lentivirus to investigate the role of DNAJA1­KO in HS­induced endothelial barrier disruption. It was shown that DNAJA1­KO could ameliorate decreased cell viability and increased cell injury, according to the results of Cell Counting Kit­8 and lactate dehydrogenase assays. Moreover, HS­induced endothelial cell apoptosis was inhibited by DNAJA1­KO, as indicated by Annexin V­FITC/PI staining and cleaved­caspase­3 expression using flow cytometry and western blotting, respectively. Furthermore, the endothelial barrier function, as measured by transepithelial electrical resistance and FITC­Dextran, was sustained during HS. DNAJA1­KO was not found to have a significant effect on the expression and distribution of cell junction proteins under normal conditions without HS. However, DNAJA1­KO could effectively protect the HS­induced decrease in the expression and distribution of cell junction proteins, including zonula occludens­1, claudin­5, junctional adhesion molecule A and occludin. A total of 4,394 proteins were identified using proteomic analysis, of which 102 differentially expressed proteins (DEPs) were activated in HS­induced wild­type cells and inhibited by DNAJA1­KO. DEPs were investigated by enrichment analysis, which demonstrated significant enrichment in the 'calcium signaling pathway' and associations with vascular­barrier regulation. Furthermore, the 'myosin light­chain kinase (MLCK)­MLC signaling pathway' was proven to be activated by HS and inhibited by DNAJA1­KO, as expected. Moreover, DNAJA1­KO mice and a HS mouse model were established to demonstrate the protective effects on endothelial barrier in vivo. In conclusion, the results of the present study suggested that DNAJA1­KO alleviates HS­induced endothelial barrier disruption by improving thermal tolerance and suppressing the MLCK­MLC signaling pathway.


Sujet(s)
Protéines du choc thermique HSP40 , Coup de chaleur , Animaux , Humains , Souris , Coup de chaleur/génétique , Coup de chaleur/métabolisme , Protéines du choc thermique HSP40/génétique , Cellules endothéliales de la veine ombilicale humaine , Souris knockout , Protéomique , Transduction du signal
19.
Adv Mater ; 36(25): e2311020, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38511489

RÉSUMÉ

Color-tunable organic light-emitting diodes (CT-OLEDs) have a large color-tuning range, high efficiency and operational stability at practical luminance, making them ideal for human-machine interactive terminals of wearable biomedical devices. However, the device operational lifetime of CT-OLEDs is currently far from reaching practical requirements. To address this problem, a tetradentate Pt(II) complex named tetra-Pt-dbf, which can emit efficiently in both monomer and aggregation states, is designed. This emitter has high Td of 508 °C and large intermolecular bonding energy of -52.0 kcal mol⁻1, which improve its thermal/chemical stability. This unique single-emitter CT-OLED essentially avoids the "color-aging issue" and achieves a large color-tuning span (red to yellowish green) and a high external quantum efficiency (EQE) of ≈30% at 1000 cd m-2 as well as an EQE of above 25% at 10000 cd m-2. A superior LT90 operational lifetime of 520,536 h at a functional luminance of 100 cd m-2, which is over 20 times longer than the state-of-the-art CT-OLEDs, is estimated. To demonstrate the potential application of such OLEDs in wearable biomedical devices, a simple electromyography (EMG)-visualization system is fabricated using the CT-OLEDs.

20.
ACS Appl Mater Interfaces ; 16(11): 13563-13572, 2024 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-38449378

RÉSUMÉ

Antibacterial hydrogels have emerged as a promising approach for effective wound treatment. However, despite extensive research on the fabrication of antibacterial hydrogels, it remains challenging to develop injectable, biocompatible, transparent, and mass-producible hydrogels with antibacterial properties. In this study, we successfully fabricated an antibacterial drug-loaded composite hydrogel, named CC45/OKG40/HS, through a Schiff base reaction between carboxymethyl chitosan (CC) and oxidized konjac glucomannan (OKG), followed by the encapsulation of stevioside-stabilized honokiol (HS) micelles. The CC45/OKG40/HS hydrogel exhibited several favorable properties, including a short gel time (<10 min), high water content (>92%), injectability, good adhesiveness, self-healing ability, and high transparency. In vitro experiments confirmed its excellent antibacterial properties, antioxidant activities, and high biocompatibility (no cytotoxicity, hemolysis ratio <5%). Furthermore, in vivo evaluation demonstrated that the CC45/OKG40/HS0.5 hydrogel accelerated wound healing by relieving inflammatory responses and enhancing re-epithelization. Given its feasibility for mass production, the findings showed that the CC45/OKG40/HS hydrogel has the potential as an advanced antibacterial wound dressing for commercial use.


Sujet(s)
Chitosane , Mannanes , Chitosane/pharmacologie , Hydrogels/pharmacologie , Micelles , Cicatrisation de plaie , Antibactériens/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...