Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 26
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Plant Phenomics ; 6: 0179, 2024.
Article de Anglais | MEDLINE | ID: mdl-38721548

RÉSUMÉ

The architecture of apple trees plays a pivotal role in shaping their growth and fruit-bearing potential, forming the foundation for precision apple management. Traditionally, 2D imaging technologies were employed to delineate the architectural traits of apple trees, but their accuracy was hampered by occlusion and perspective ambiguities. This study aimed to surmount these constraints by devising a 3D geometry-based processing pipeline for apple tree structure segmentation and architectural trait characterization, utilizing point clouds collected by a terrestrial laser scanner (TLS). The pipeline consisted of four modules: (a) data preprocessing module, (b) tree instance segmentation module, (c) tree structure segmentation module, and (d) architectural trait extraction module. The developed pipeline was used to analyze 84 trees of two representative apple cultivars, characterizing architectural traits such as tree height, trunk diameter, branch count, branch diameter, and branch angle. Experimental results indicated that the established pipeline attained an R2 of 0.92 and 0.83, and a mean absolute error (MAE) of 6.1 cm and 4.71 mm for tree height and trunk diameter at the tree level, respectively. Additionally, at the branch level, it achieved an R2 of 0.77 and 0.69, and a MAE of 6.86 mm and 7.48° for branch diameter and angle, respectively. The accurate measurement of these architectural traits can enable precision management in high-density apple orchards and bolster phenotyping endeavors in breeding programs. Moreover, bottlenecks of 3D tree characterization in general were comprehensively analyzed to reveal future development.

2.
Glob Chang Biol ; 30(1): e17075, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38273586

RÉSUMÉ

The strength and persistence of the tropical carbon sink hinges on the long-term responses of woody growth to climatic variations and increasing CO2 . However, the sensitivity of tropical woody growth to these environmental changes is poorly understood, leading to large uncertainties in growth predictions. Here, we used tree ring records from a Southeast Asian tropical forest to constrain ED2.2-hydro, a terrestrial biosphere model with explicit vegetation demography. Specifically, we assessed individual-level woody growth responses to historical climate variability and increases in atmospheric CO2 (Ca ). When forced with historical Ca , ED2.2-hydro reproduced the magnitude of increases in intercellular CO2 concentration (a major determinant of photosynthesis) estimated from tree ring carbon isotope records. In contrast, simulated growth trends were considerably larger than those obtained from tree rings, suggesting that woody biomass production efficiency (WBPE = woody biomass production:gross primary productivity) was overestimated by the model. The estimated WBPE decline under increasing Ca based on model-data discrepancy was comparable to or stronger than (depending on tree species and size) the observed WBPE changes from a multi-year mature-forest CO2 fertilization experiment. In addition, we found that ED2.2-hydro generally overestimated climatic sensitivity of woody growth, especially for late-successional plant functional types. The model-data discrepancy in growth sensitivity to climate was likely caused by underestimating WBPE in hot and dry years due to commonly used model assumptions on carbon use efficiency and allocation. To our knowledge, this is the first study to constrain model predictions of individual tree-level growth sensitivity to Ca and climate against tropical tree-ring data. Our results suggest that improving model processes related to WBPE is crucial to obtain better predictions of tropical forest responses to droughts and increasing Ca . More accurate parameterization of WBPE will likely reduce the stimulation of woody growth by Ca rise predicted by biosphere models.


Sujet(s)
Dioxyde de carbone , Climat tropical , Bois , Forêts , Séquestration du carbone , Biomasse
3.
BMC Med Genomics ; 16(1): 171, 2023 07 25.
Article de Anglais | MEDLINE | ID: mdl-37488596

RÉSUMÉ

BACKGROUND: Progressive familial intrahepatic cholestasis (PFIC) is a group of rapidly progressive autosomal recessive disorders characterized by intrahepatic cholestasis. PFIC-3 is caused by mutations in the ATP-binding cassette subfamily B member 4 gene (ABCB4), which encodes multidrug resistance protein 3 (MDR3/ABCB4). Patients are usually in infancy or childhood, but cirrhosis and portal hypertension may be the first manifestation in older children or young adults. CASE PRESENTATION: A 25-year-old young woman with recurrent abnormal hepatic function was mainly characterized by increased gamma glutamyl transpeptidase (GGT) and bile acid with cryptogenic cirrhosis. After 7 months of treatment with ursodeoxycholic acid (UDCA), her hepatic pathology suggested there were also obvious widening and venous fibrosis around the portal vein, and slight bile duct hyperplasia at the edge of the portal area. Infiltration of inflammatory cells around the portal vein and hepatocyte ABCB4/MDR3 protein was basically normal. Sequencing indicated the patient had heterozygous mutations in the ABCB4 gene: c.2696C > G and wes [hg19]7q21.12(87032513-87033422) × 1. Through SWISS-MODEL Predict for protein structures, the missense mutation results in protein side chain missing a methyl group (-CH3), and the deletion mutation results in the serious damage to the structure of MDR3 protein which lead to phosphatidylcholine deficiency of bile in the capillary bile ducts. The toxic effect of bile salts then damages the bile ducts, causing cholestasis and cholangitis, which can then develop into biliary cirrhosis. Through the analysis of pathogenicity prediction software, the mutations led to PFIC3. After treatment of UDCA for 29 months, her cirrhosis was improved, hepatic function was close to normal. CONCLUSION: Novel heterozygous mutations are the molecular pathological cause of PFIC3 in this patient. All young adult patients with occult cirrhosis should be tested for ABCB4. Early diagnosis of PFIC3 and continued treatment with UDCA are key to improving prognosis and delaying the onset of end-stage liver disease.


Sujet(s)
Cholestase intrahépatique , Acide ursodésoxycholique , Humains , Femelle , Enfant , Jeune adulte , Adulte , Cirrhose du foie , Mutation , Acides et sels biliaires
4.
Ecol Lett ; 26(6): 1005-1020, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37078440

RÉSUMÉ

Life on Earth depends on the conversion of solar energy to chemical energy by plants through photosynthesis. A fundamental challenge in optimizing photosynthesis is to adjust leaf angles to efficiently use the intercepted sunlight under the constraints of heat stress, water loss and competition. Despite the importance of leaf angle, until recently, we have lacked data and frameworks to describe and predict leaf angle dynamics and their impacts on leaves to the globe. We review the role of leaf angle in studies of ecophysiology, ecosystem ecology and earth system science, and highlight the essential yet understudied role of leaf angle as an ecological strategy to regulate plant carbon-water-energy nexus and to bridge leaf, canopy and earth system processes. Using two models, we show that leaf angle variations have significant impacts on not only canopy-scale photosynthesis, energy balance and water use efficiency but also light competition within the forest canopy. New techniques to measure leaf angles are emerging, opening opportunities to understand the rarely-measured intraspecific, interspecific, seasonal and interannual variations of leaf angles and their implications to plant biology and earth system science. We conclude by proposing three directions for future research.


Sujet(s)
Écosystème , Photosynthèse , Photosynthèse/physiologie , Feuilles de plante/physiologie , Eau , Technologie , Arbres/physiologie
5.
Sci Adv ; 9(3): eadd5667, 2023 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-36652527

RÉSUMÉ

The life span of leaves increases with their mass per unit area (LMA). It is unclear why. Here, we show that this empirical generalization (the foundation of the worldwide leaf economics spectrum) is a consequence of natural selection, maximizing average net carbon gain over the leaf life cycle. Analyzing two large leaf trait datasets, we show that evergreen and deciduous species with diverse construction costs (assumed proportional to LMA) are selected by light, temperature, and growing-season length in different, but predictable, ways. We quantitatively explain the observed divergent latitudinal trends in evergreen and deciduous LMA and show how local distributions of LMA arise by selection under different environmental conditions acting on the species pool. These results illustrate how optimality principles can underpin a new theory for plant geography and terrestrial carbon dynamics.

6.
Glob Chang Biol ; 28(6): 2081-2094, 2022 03.
Article de Anglais | MEDLINE | ID: mdl-34921474

RÉSUMÉ

Sensitivity of forest mortality to drought in carbon-dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high-frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site-year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave-one-out cross-validation R2  = 0.54), which allows for estimates of annual biomass mortality patterns at 30 m resolution. Subsequent spatial analysis showed substantial fine-scale heterogeneity of forest mortality patterns, largely driven by drought intensity and ecosystem properties related to plant water use such as forest deciduousness and topography. Highly deciduous forest patches demonstrated much lower mortality sensitivity to drought stress than less deciduous forest patches after elevation was controlled. Our results highlight the potential of high-resolution remote sensing to "fingerprint" forest mortality and the significant role of ecosystem heterogeneity in forest biomass resistance to drought.


Sujet(s)
Sécheresses , Écosystème , Biomasse , Forêts , Plantes , Arbres
7.
Glob Chang Biol ; 27(23): 6005-6024, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34478589

RÉSUMÉ

Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts.


Sujet(s)
Sécheresses , Écosystème , Forêts , Feuilles de plante , Arbres , Xylème
8.
Ecol Lett ; 24(11): 2526-2528, 2021 Nov.
Article de Anglais | MEDLINE | ID: mdl-34510686

RÉSUMÉ

Chen et al. (Ecology Letters, 2021, 24, 1018) concluded that plant input governs topsoil carbon persistence in alpine grasslands. We demonstrated that the excluded direct effect of precipitation on topsoil Δ14 C in their analysis was significant and strong. Our results provide an alternative viewpoint on the drivers of soil carbon turnover.


Sujet(s)
Carbone , Prairie , Plantes , Sol , Microbiologie du sol
9.
New Phytol ; 231(1): 122-136, 2021 07.
Article de Anglais | MEDLINE | ID: mdl-33539544

RÉSUMÉ

Variation in canopy water content (CWC) that can be detected from microwave remote sensing of vegetation optical depth (VOD) has been proposed as an important measure of vegetation water stress. However, the contribution of leaf surface water (LWs ), arising from dew formation and rainfall interception, to CWC is largely unknown, particularly in tropical forests and other high-humidity ecosystems. We compared VOD data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and CWC predicted by a plant hydrodynamics model at four tropical sites in Brazil spanning a rainfall gradient. We assessed how LWs influenced the relationship between VOD and CWC. The analysis indicates that while CWC is strongly correlated with VOD (R2  = 0.62 across all sites), LWs accounts for 61-76% of the diurnal variation in CWC despite being < 10% of CWC. Ignoring LWs weakens the near-linear relationship between CWC and VOD and reduces the consistency in diurnal variation. The contribution of LWs to CWC variation, however, decreases at longer, seasonal to inter-annual, time scales. Our results demonstrate that diurnal patterns of dew formation and rainfall interception can be an important driver of diurnal variation in CWC and VOD over tropical ecosystems and therefore should be accounted for when inferring plant diurnal water stress from VOD measurements.


Sujet(s)
Écosystème , Eau , Brésil , Déshydratation , Forêts , Feuilles de plante , Saisons , Arbres
10.
J Ecol ; 109(1): 519-540, 2021 Jan.
Article de Anglais | MEDLINE | ID: mdl-33536686

RÉSUMÉ

Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long-term carbon sequestration.Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour-intensive and ecosystem-scale manipulation experiments, which are infeasible in most situations.We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process-based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana-infested forests. Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process-based vegetation model.

11.
Glob Chang Biol ; 26(9): 5052-5062, 2020 Sep.
Article de Anglais | MEDLINE | ID: mdl-32539197

RÉSUMÉ

The terrestrial carbon cycle has been strongly influenced by human-induced CO2 increase, climate change, and land use change since the industrial revolution. These changes alter the carbon balance of ecosystems through changes in vegetation productivity and ecosystem carbon turnover time (τeco ). Even though numerous studies have drawn an increasingly clear picture of global vegetation productivity changes, global changes in τeco are still unknown. In this study, we analyzed the changes of τeco between the 1860s and the 2000s and their drivers, based on theory of dynamic carbon cycle in non-steady state and process-based ecosystem model. Results indicate that τeco has been reduced (i.e., carbon turnover has accelerated) by 13.5% from the 1860s (74 years) to the 2000s (64 years), with reductions of 1 year of carbon residence times in vegetation (rveg ) and of 9 years in soil (rsoil ). Additionally, the acceleration of τeco was examined at biome scale and grid scale. Among different driving processes, land use change and climate change were found to be the major drivers of turnover acceleration. These findings imply that carbon fixed by plant photosynthesis is being lost from ecosystems to the atmosphere more quickly over time, with important implications for the climate-carbon cycle feedbacks.


Sujet(s)
Carbone , Écosystème , Cycle du carbone , Dioxyde de carbone/analyse , Changement climatique , Humains , Sol
12.
New Phytol ; 228(1): 361-375, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32473028

RÉSUMÉ

Leaf photosynthetic properties, for example the maximum carboxylation velocity or Vc,max , change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf-level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light). The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels. Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and Vc,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between Vc,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models. This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first-step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.


Sujet(s)
Écosystème , Feuilles de plante , Dioxyde de carbone , Azote , Photosynthèse , Feuilles de plante/métabolisme , Ribulose bisphosphate carboxylase/métabolisme
13.
Glob Chang Biol ; 26(5): 3122-3133, 2020 05.
Article de Anglais | MEDLINE | ID: mdl-32053250

RÉSUMÉ

Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicting the location of catastrophic drought years in advance. We used long-term demographic records and extensive databases of functional traits and distribution patterns to understand the responses of 20-53 species to an extreme drought in a seasonally dry tropical forest in Costa Rica, which occurred during the 2015 El Niño Southern Oscillation event. Overall, species-specific mortality rates during the drought ranged from 0% to 34%, and varied little as a function of tree size. By contrast, hydraulic safety margins correlated well with probability of mortality among species, while morphological or leaf economics spectrum traits did not. This firmly suggests hydraulic traits as targets for future research.


Sujet(s)
Sécheresses , El Nino-oscillation australe , Costa Rica , Forêts , Feuilles de plante , Climat tropical
14.
New Phytol ; 226(3): 714-726, 2020 05.
Article de Anglais | MEDLINE | ID: mdl-31630397

RÉSUMÉ

There are two theories about how allocation of metabolic products occurs. The allometric biomass partitioning theory (APT) suggests that all plants follow common allometric scaling rules. The optimal partitioning theory (OPT) predicts that plants allocate more biomass to the organ capturing the most limiting resource. Whole-plant harvests of mature and juvenile tropical deciduous trees, evergreen trees, and lianas and model simulations were used to address the following knowledge gaps: (1) Do mature lianas comply with the APT scaling laws or do they invest less biomass in stems compared to trees? (2) Do juveniles follow the same allocation patterns as mature individuals? (3) Is either leaf phenology or life form a predictor of rooting depth? It was found that: (1) mature lianas followed the same allometric scaling laws as trees; (2) juveniles and mature individuals do not follow the same allocation patterns; and (3) mature lianas had shallowest coarse roots and evergreen trees had the deepest. It was demonstrated that: (1) mature lianas invested proportionally similar biomass to stems as trees and not less, as expected; (2) lianas were not deeper-rooted than trees as had been previously proposed; and (3) evergreen trees had the deepest roots, which is necessary to maintain canopy during simulated dry seasons.


Sujet(s)
Arbres , Climat tropical , Biomasse , Forêts , Saisons
15.
Nat Commun ; 10(1): 5637, 2019 12 10.
Article de Anglais | MEDLINE | ID: mdl-31822758

RÉSUMÉ

A major uncertainty in the land carbon cycle is whether symbiotic nitrogen fixation acts to enhance the tropical forest carbon sink. Nitrogen-fixing trees can supply vital quantities of the growth-limiting nutrient nitrogen, but the extent to which the resulting carbon-nitrogen feedback safeguards ecosystem carbon sequestration remains unclear. We combine (i) field observations from 112 plots spanning 300 years of succession in Panamanian tropical forests, and (ii) a new model that resolves nitrogen and light competition at the scale of individual trees. Fixation doubled carbon accumulation in early succession and enhanced total carbon in mature forests by ~10% (~12MgC ha-1) through two mechanisms: (i) a direct fixation effect on tree growth, and (ii) an indirect effect on the successional sequence of non-fixing trees. We estimate that including nitrogen-fixing trees in Neotropical reforestation projects could safeguard the sequestration of 6.7 Gt CO2 over the next 20 years. Our results highlight the connection between functional diversity of plant communities and the critical ecosystem service of carbon sequestration for mitigating climate change.

16.
Mol Med Rep ; 20(1): 332-340, 2019 Jul.
Article de Anglais | MEDLINE | ID: mdl-31115535

RÉSUMÉ

Saikosaponin­D (SSD), which is the main bioactive component in the traditional Chinese medicine Chai Hu (Bupleurum falcatum L), possesses estrogen­like properties and is widely used in treating estrogen­related neurological disorders. The current study aimed to investigate the protective effects of SSD on the fear memory deficit in ovariectomized (OVX) rats and the potential underlying mechanism. SSD treatment significantly prolonged freezing time in OVX rats in a manner similar to that of estradiol (E2), whereas this effect was markedly suppressed by co­administration of ICI182780, a non­selective estrogen receptor (ER) inhibitor. The expression of ERα in the hippocampus of OVX rats was significantly elevated by SSD; however, Erß expression and E2 synthesis were not markedly affected by SSD treatment. Collectively, this study demonstrated that SSD­mediated fear memory improvement in OVX rats may be attributed not to E2 levels or ERß activity, but to ERα activation in the hippocampus.


Sujet(s)
Récepteur alpha des oestrogènes/génétique , Récepteur bêta des oestrogènes/génétique , Peur/effets des médicaments et des substances chimiques , Troubles de la mémoire/traitement médicamenteux , Acide oléanolique/analogues et dérivés , Saponines/pharmacologie , Animaux , Bupleurum/composition chimique , Oestradiol/métabolisme , Récepteur alpha des oestrogènes/antagonistes et inhibiteurs , Récepteur bêta des oestrogènes/antagonistes et inhibiteurs , Peur/physiologie , Femelle , Fulvestrant/pharmacologie , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/anatomopathologie , Médecine traditionnelle chinoise , Troubles de la mémoire/génétique , Troubles de la mémoire/anatomopathologie , Acide oléanolique/pharmacologie , Ovariectomie , Rats , Lobe temporal/effets des médicaments et des substances chimiques , Lobe temporal/anatomopathologie
17.
New Phytol ; 223(4): 1820-1833, 2019 09.
Article de Anglais | MEDLINE | ID: mdl-30980535

RÉSUMÉ

Censuses of tropical forest plots reveal large variation in biomass and plant composition. This paper evaluates whether such variation can emerge solely from realistic variation in a set of commonly measured soil chemical and physical properties. Controlled simulations were performed using a mechanistic model that includes forest dynamics, microbe-mediated biogeochemistry, and competition for nitrogen and phosphorus. Observations from 18 forest inventory plots in Guanacaste, Costa Rica were used to determine realistic variation in soil properties. In simulations of secondary succession, the across-plot range in plant biomass reached 30% of the mean and was attributable primarily to nutrient limitation and secondarily to soil texture differences that affected water availability. The contributions of different plant functional types to total biomass varied widely across plots and depended on soil nutrient status. In Central America, soil-induced variation in plant biomass increased with mean annual precipitation because of changes in nutrient limitation. In Central America, large variation in plant biomass and ecosystem composition arises mechanistically from realistic variation in soil properties. The degree of biomass and compositional variation is climate sensitive. In general, model predictions can be improved through better representation of soil nutrient processes, including their spatial variation.


Sujet(s)
Forêts , Modèles théoriques , Sol/composition chimique , Climat tropical , Biomasse , Simulation numérique , Entropie
18.
Glob Chang Biol ; 24(10): 4983-4992, 2018 10.
Article de Anglais | MEDLINE | ID: mdl-29855126

RÉSUMÉ

Theoretical and eddy covariance studies demonstrate that aerosol-loading stimulates canopy photosynthesis, but field evidence for the aerosol effect on tree growth is limited. Here, we measured in situ daily stem growth rates of aspen trees under a wide range of aerosol-loading in China. The results showed that daily stem growth rates were positively correlated with aerosol-loading, even at exceptionally high aerosol levels. Using structural equation modeling analysis, we showed that variations in stem growth rates can be largely attributed to two environmental variables covarying with aerosol loading: diffuse fraction of radiation and vapor pressure deficit (VPD). Furthermore, we found that these two factors influence stem growth by influencing photosynthesis from different parts of canopy. Using field observations and a mechanistic photosynthesis model, we demonstrate that photosynthetic rates of both sun and shade leaves increased under high aerosol-loading conditions but for different reasons. For sun leaves, the photosynthetic increase was primarily attributed to the concurrent lower VPD; for shade leaves, the positive aerosol effect was tightly connected with increased diffuse light. Overall, our study provides the first field evidence of increased tree growth under high aerosol loading. We highlight the importance of understanding biophysical mechanisms of aerosol-meteorology interactions, and incorporating the different pathways of aerosol effects into earth system models to improve the prediction of large-scale aerosol impacts, and the associated vegetation-mediated climate feedbacks.


Sujet(s)
Aérosols/métabolisme , Arbres/croissance et développement , Chine , Lumière , Photosynthèse/effets des radiations , Feuilles de plante/métabolisme , Feuilles de plante/effets des radiations , Tiges de plante/croissance et développement , Arbres/métabolisme
19.
New Phytol ; 219(3): 851-869, 2018 08.
Article de Anglais | MEDLINE | ID: mdl-29451313

RÉSUMÉ

Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.


Sujet(s)
Forêts , Humidité , Arbres/physiologie , Climat tropical , Dioxyde de carbone/métabolisme , Modèles théoriques
20.
Glob Chang Biol ; 24(1): 35-54, 2018 01.
Article de Anglais | MEDLINE | ID: mdl-28921829

RÉSUMÉ

Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.


Sujet(s)
, Écosystème , Modèles biologiques , Plantes , Dynamique des populations , Incertitude
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...