Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34750583

RÉSUMÉ

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Sujet(s)
Prolifération cellulaire , DEAD-box RNA helicases/métabolisme , Cellules endothéliales/enzymologie , Lymphangiogenèse , Vaisseaux lymphatiques/enzymologie , ARN ribosomique/biosynthèse , Ribosomes/métabolisme , Protéine p53 suppresseur de tumeur/métabolisme , Facteur de croissance endothéliale vasculaire de type C/métabolisme , Protéines de poisson-zèbre/métabolisme , Animaux , Animal génétiquement modifié , Points de contrôle du cycle cellulaire , Cellules cultivées , Inhibiteur p21 de kinase cycline-dépendante/génétique , Inhibiteur p21 de kinase cycline-dépendante/métabolisme , DEAD-box RNA helicases/génétique , Régulation de l'expression des gènes au cours du développement , Cellules endothéliales de la veine ombilicale humaine/enzymologie , Humains , Vaisseaux lymphatiques/embryologie , ARN ribosomique/génétique , Ribosomes/génétique , Transduction du signal , Protéine p53 suppresseur de tumeur/génétique , Facteur de croissance endothéliale vasculaire de type C/génétique , Récepteur-3 au facteur croissance endothéliale vasculaire/génétique , Récepteur-3 au facteur croissance endothéliale vasculaire/métabolisme , Danio zébré/embryologie , Danio zébré/génétique , Protéines de poisson-zèbre/génétique
2.
Signal Transduct Target Ther ; 6(1): 323, 2021 08 30.
Article de Anglais | MEDLINE | ID: mdl-34462428

RÉSUMÉ

Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.


Sujet(s)
Maladies génétiques congénitales/génétique , Thérapie moléculaire ciblée , Tumeurs/génétique , Protéines ribosomiques/génétique , Points de contrôle du cycle cellulaire/génétique , Prolifération cellulaire/génétique , Maladies génétiques congénitales/thérapie , Humains , Mutation/génétique , Tumeurs/thérapie , Protéines ribosomiques/usage thérapeutique , Ribosomes/génétique
3.
Genes (Basel) ; 12(8)2021 07 28.
Article de Anglais | MEDLINE | ID: mdl-34440328

RÉSUMÉ

The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400-600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.


Sujet(s)
Antinéoplasiques/pharmacologie , Nucléole/effets des médicaments et des substances chimiques , Altération de l'ADN , Tumeurs/thérapie , ADN ribosomique/génétique , Humains
4.
Br J Cancer ; 124(3): 616-627, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-33173151

RÉSUMÉ

BACKGROUND: Intrinsic and acquired drug resistance represent fundamental barriers to the cure of high-grade serous ovarian carcinoma (HGSC), the most common histological subtype accounting for the majority of ovarian cancer deaths. Defects in homologous recombination (HR) DNA repair are key determinants of sensitivity to chemotherapy and poly-ADP ribose polymerase inhibitors. Restoration of HR is a common mechanism of acquired resistance that results in patient mortality, highlighting the need to identify new therapies targeting HR-proficient disease. We have shown promise for CX-5461, a cancer therapeutic in early phase clinical trials, in treating HR-deficient HGSC. METHODS: Herein, we screen the whole protein-coding genome to identify potential targets whose depletion cooperates with CX-5461 in HR-proficient HGSC. RESULTS: We demonstrate robust proliferation inhibition in cells depleted of DNA topoisomerase 1 (TOP1). Combining the clinically used TOP1 inhibitor topotecan with CX-5461 potentiates a G2/M cell cycle checkpoint arrest in multiple HR-proficient HGSC cell lines. The combination enhances a nucleolar DNA damage response and global replication stress without increasing DNA strand breakage, significantly reducing clonogenic survival and tumour growth in vivo. CONCLUSIONS: Our findings highlight the possibility of exploiting TOP1 inhibition to be combined with CX-5461 as a non-genotoxic approach in targeting HR-proficient HGSC.


Sujet(s)
Benzothiazoles/pharmacologie , Cystadénocarcinome séreux/traitement médicamenteux , Altération de l'ADN/effets des médicaments et des substances chimiques , Recombinaison homologue , Naphtyridines/pharmacologie , Tumeurs de l'ovaire/traitement médicamenteux , RNA polymerase I/antagonistes et inhibiteurs , Inhibiteurs de la topoisomérase-I/pharmacologie , Topotécane/pharmacologie , Animaux , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Cystadénocarcinome séreux/génétique , Cystadénocarcinome séreux/anatomopathologie , Réplication de l'ADN/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/génétique , Synergie des médicaments , Association de médicaments , Femelle , Points de contrôle de la phase G1 du cycle cellulaire , Gène BRCA2 , Humains , Points de contrôle de la phase M du cycle cellulaire , Souris , Souris de lignée NOD , Souris SCID , Grading des tumeurs , Tumeurs de l'ovaire/génétique , Tumeurs de l'ovaire/anatomopathologie , Inhibiteurs de poly(ADP-ribose) polymérases/usage thérapeutique , Interférence par ARN , RNA polymerase I/génétique
5.
Mol Cell Oncol ; 7(6): 1805256, 2020 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-33235908

RÉSUMÉ

Acquired drug resistance leads to poor clinical outcome in high grade serous ovarian cancer (HGSOC). We have demonstrated the efficacy of the novel drug CX-5461 in HGSOC is mediated through destabilization of DNA replication forks. The data highlights the potential of CX-5461 in overcoming a general mechanism of chemotherapeutic resistance.

6.
Nat Commun ; 11(1): 2641, 2020 05 26.
Article de Anglais | MEDLINE | ID: mdl-32457376

RÉSUMÉ

Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.


Sujet(s)
Benzothiazoles/pharmacologie , Cystadénocarcinome séreux/traitement médicamenteux , Altération de l'ADN , Naphtyridines/pharmacologie , Tumeurs de l'ovaire/traitement médicamenteux , Animaux , Lignée cellulaire tumorale , Cystadénocarcinome séreux/génétique , Cystadénocarcinome séreux/métabolisme , Réplication de l'ADN/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques , Antienzymes/pharmacologie , Femelle , Hétérogreffes , Recombinaison homologue , Humains , Souris , Souris de lignée NOD , Souris knockout , Souris SCID , Modèles biologiques , Tumeurs de l'ovaire/génétique , Tumeurs de l'ovaire/métabolisme , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , RNA polymerase I/antagonistes et inhibiteurs , Transcriptome
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE