Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.242
Filtrer
1.
Front Oncol ; 14: 1376490, 2024.
Article de Anglais | MEDLINE | ID: mdl-38983927

RÉSUMÉ

Background and aims: Patients with relapsed/refractory aggressive B-cell lymphoma(r/r aBCL)who progressed after CD19-specific chimeric antigen receptor T-cell therapy (CD19CART) had a poor prognosis. Application of CAR T-cells targeting a second different antigen (CD20) expressed on the surface of B-cell lymphoma as subsequent anti-cancer salvage therapy (CD20-SD-CART) is also an option. This study aimed to evaluate the survival outcome of CD20-SD-CART as a salvage therapy for CD19 CART treatment failure. Methods: This retrospective cohort study enrolled patients with aBCL after the failure of CD19 CART treatment at Beijing Gobroad Boren Hospital from December 2019 to May 2022. Patients were subsequently treated with CD20CART therapy or non-CART therapy (polatuzumab or non-polatuzumab). Results: A total of 93 patients were included in the study, with 54 patients receiving CD20-SD-CART therapy. After a median follow-up of 18.54 months, the CD20-SD-CART group demonstrated significantly longer median progression-free survival (4.04 months vs. 2.27 months, p=0.0032) and median overall survival (8.15 months vs. 3.02 months, p<0.0001) compared to the non-CART group. The complete response rate in the CD20-SD-CART group (15/54, 27.8%) was also significantly higher than the non-CART group (3/38, 7.9%, p=0.03). Multivariate analysis further confirmed that CD20CART treatment was independently associated with improved overall survival (HR, 0.28; 95% CI, 0.16-0.51; p<0.0001) and progression-free survival (HR, 0.46; 95% CI, 0.27-0.8; p=0.005). Conclusion: CD20-SD-CART could serve as an effective therapeutic option for patients with relapsed or refractory aggressive B-cell lymphoma after CD19CART treatment failure.

3.
RSC Adv ; 14(30): 21938-21944, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38989244

RÉSUMÉ

Precious metal nanoparticles have been widely investigated due to their excellent activity shown in catalysis and sensing. However, how to prepare highly dispersed noble metal nanoparticles to improve the lifetime of catalysts and reduce the cost is still an urgent problem to be solved. In this study, a carbon-based carrier material was prepared by an expansion method and loaded with Pd or Ag nanoparticles on this carbon material to synthesize precious metal nanoparticle composites, which were characterized in detail. The results show that the nanoparticles prepared using this method exhibit superior dispersion. Under the synergistic effect of noble metal nanoparticles and porous carbon carriers, the composites exhibited excellent catalytic degradation of p-nitrophenol and showed excellent sensing performance in the modified hydrogen peroxide sensor electrode. This approach is highly informative for the preparation of nanocomposites in medical and environmental fields.

4.
Int J Biol Macromol ; 275(Pt 1): 133522, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38945325

RÉSUMÉ

A facile biphasic system composed of choline chloride (ChCl)-based deep eutectic solvent (DES) and methyl isobutyl ketone (MIBK) was developed to realize the furfural production, lignin separation and preparation of fermentable glucose from Eucalyptus in one-pot. Results showed that the ChCl/1,2-propanediol/MIBK system owned the best property to convert hemicelluloses into furfural. Under the optimal conditions (MRChCl:1,2-propanediol = 1:2, raw materials:DES:MIBK ratio = 1:4:8 g/g/mL, 0.075 mol/L AlCl3·6H2O, 140 °C, and 90 min), the furfural yield and glucose yield reached 65.0 and 92.2 %, respectively. Meanwhile, the lignin with low molecular weight (1250-1930 g/mol), low polydispersity (DM = 1.25-1.53) and high purity (only 0.08-2.59 % carbohydrate content) was regenerated from the biphasic system. With the increase of pretreatment temperature, the ß-O-4, ß-ß and ß-5 linkages in the regenerated lignin were gradually broken, and the content of phenolic hydroxyl groups increased, but the content of aliphatic hydroxyl groups decreased. This research provides a new strategy for the comprehensive utilization of lignocellulose in biorefinery process.

5.
Plant Biotechnol J ; 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38923257

RÉSUMÉ

Oil-Camellia (Camellia oleifera), belonging to the Theaceae family Camellia, is an important woody edible oil tree species. The Camellia oil in its mature seed kernels, mainly consists of more than 90% unsaturated fatty acids, tea polyphenols, flavonoids, squalene and other active substances, which is one of the best quality edible vegetable oils in the world. However, genetic research and molecular breeding on oil-Camellia are challenging due to its complex genetic background. Here, we successfully report a chromosome-scale genome assembly for a hexaploid oil-Camellia cultivar Changlin40. This assembly contains 8.80 Gb genomic sequences with scaffold N50 of 180.0 Mb and 45 pseudochromosomes comprising 15 homologous groups with three members each, which contain 135 868 genes with an average length of 3936 bp. Referring to the diploid genome, intragenomic and intergenomic comparisons of synteny indicate homologous chromosomal similarity and changes. Moreover, comparative and evolutionary analyses reveal three rounds of whole-genome duplication (WGD) events, as well as the possible diversification of hexaploid Changlin40 with diploid occurred approximately 9.06 million years ago (MYA). Furthermore, through the combination of genomics, transcriptomics and metabolomics approaches, a complex regulatory network was constructed and allows to identify potential key structural genes (SAD, FAD2 and FAD3) and transcription factors (AP2 and C2H2) that regulate the metabolism of Camellia oil, especially for unsaturated fatty acids biosynthesis. Overall, the genomic resource generated from this study has great potential to accelerate the research for the molecular biology and genetic improvement of hexaploid oil-Camellia, as well as to understand polyploid genome evolution.

6.
Materials (Basel) ; 17(12)2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38930346

RÉSUMÉ

Pinch milling is a new technique for slender and long blade machining, which can simultaneously improve the machining quality and efficiency. However, two-cutter orientation planning is a major challenge due to the irregular blade surfaces and the structural constraints of nine-axis machine tools. In this paper, a method of twin-tool smoothing orientation determination is proposed for a thin-walled blade with pinch milling. Considering the processing status of the two cutters and workpiece, the feasible domain of the twin-tool axis vector and its characterization method are defined. At the same time, an evaluation algorithm of global and local optimization is proposed, and a smoothing algorithm is explored within the feasible domain along the two tool paths. Finally, a set of smoothly aligned tool orientations are generated, and the overall smoothness is nearly globally optimized. A preliminary simulation verification of the proposed algorithm is conducted on a turbine blade model and the planning tool orientation is found to be stable, smooth, and well formed, which avoids collision interference and ultimately improves the machining accuracy of the blade with difficult-to-machine materials.

7.
Front Endocrinol (Lausanne) ; 15: 1409653, 2024.
Article de Anglais | MEDLINE | ID: mdl-38883601

RÉSUMÉ

The global prevalence of cardiovascular diseases (CVD) continues to rise steadily, making it a leading cause of mortality worldwide. Atherosclerosis (AS) serves as a primary driver of these conditions, commencing silently at an early age and culminating in adverse cardiovascular events that severely impact patients' quality of life or lead to fatality. Dyslipidemia, particularly elevated levels of low-density lipoprotein cholesterol (LDL-C), plays a pivotal role in AS pathogenesis as an independent risk factor. Research indicates that abnormal LDL-C accumulation within arterial walls acts as a crucial trigger for atherosclerotic plaque formation. As the disease progresses, plaque accumulation may rupture or dislodge, resulting in thrombus formation and complete blood supply obstruction, ultimately causing myocardial infarction, cerebral infarction, and other common adverse cardiovascular events. Despite adequate pharmacologic therapy targeting LDL-C reduction, patients with cardiometabolic abnormalities remain at high risk for disease recurrence, highlighting the importance of addressing lipid risk factors beyond LDL-C. Recent attention has focused on the causal relationship between triglycerides, triglyceride-rich lipoproteins (TRLs), and their remnants in AS risk. Genetic, epidemiologic, and clinical studies suggest a causal relationship between TRLs and their remnants and the increased risk of AS, and this dyslipidemia may be an independent risk factor for adverse cardiovascular events. Particularly in patients with obesity, metabolic syndrome, diabetes, and chronic kidney disease, disordered TRLs and its remnants levels significantly increase the risk of atherosclerosis and cardiovascular disease development. Accumulation of over-synthesized TRLs in plasma, impaired function of enzymes involved in TRLs lipolysis, and impaired hepatic clearance of cholesterol-rich TRLs remnants can lead to arterial deposition of TRLs and its remnants, promoting foam cell formation and arterial wall inflammation. Therefore, understanding the pathogenesis of TRLs-induced AS and targeting it therapeutically could slow or impede AS progression, thereby reducing cardiovascular disease morbidity and mortality, particularly coronary atherosclerotic heart disease.


Sujet(s)
Maladies cardiovasculaires , Lipoprotéines , Triglycéride , Humains , Maladies cardiovasculaires/métabolisme , Maladies cardiovasculaires/étiologie , Lipoprotéines/métabolisme , Triglycéride/métabolisme , Triglycéride/sang , Athérosclérose/métabolisme , Animaux , Dyslipidémies/métabolisme , Facteurs de risque
8.
Pestic Biochem Physiol ; 202: 105912, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38879294

RÉSUMÉ

Herbicide resistance is a worldwide concern for weed control. Cucumis melo L. var. agrestis Naud. (C. melo) is an annual trailing vine weed that is commonly controlled by nicosulfuron, acetolactate synthase (ALS)-inhibiting herbicides. However, long-term use of this herbicide has led to the emergence of resistance and several nicosulfuron resistant populations of C. melo have been found. Here we identified a resistant (R) C. melo population exhibiting 7.31-fold resistance to nicosulfuron compared with a reference sensitive (S) population. ALS gene sequencing of the target site revealed no amino acid substitution in R plants, and no difference in enzyme activity, as shown by ALS activity assays in vitro. ALS gene expression was not significantly different before and after the application of nicosulfuron. Pretreatment with the cytochrome P450 monooxygenase (P450) inhibitor malathion reduced nicosulfuron resistance in the R population. RNA-Seq transcriptome analysis was used to identify candidate genes that may confer metabolic resistance to nicosulfuron. We selected genes with annotations related to detoxification functions. A total of 20 candidate genes (7 P450 genes, 1 glutathione S-transferase (GST) gene, 2 ATP-binding cassette (ABC) transporters, and 10 glycosyltransferase (GT)) were identified; 12 of them (7 P450s, 1 GST, 2 ABC transporters, and 2 GTs) were demonstrated significantly differential expression between R and S by quantitative real-time RT-PCR (qRT-PCR). Our findings revealed that the resistance mechanism in C. melo was nontarget-site based. Our results also provide a valuable resource for studying the molecular mechanisms of weed resistance.


Sujet(s)
Acetolactate synthase , Cucumis melo , Résistance aux herbicides , Herbicides , Pyridines , Sulfonylurées , Résistance aux herbicides/génétique , Sulfonylurées/pharmacologie , Herbicides/pharmacologie , Herbicides/toxicité , Acetolactate synthase/génétique , Acetolactate synthase/métabolisme , Cucumis melo/génétique , Cucumis melo/effets des médicaments et des substances chimiques , Pyridines/pharmacologie , RNA-Seq , Analyse de profil d'expression de gènes , Malathion/pharmacologie , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Protéines végétales/génétique , Protéines végétales/métabolisme
9.
BMC Anesthesiol ; 24(1): 176, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38760677

RÉSUMÉ

BACKGROUND: The role of mechanical power on pulmonary outcomes after thoracic surgery with one-lung ventilation was unclear. We investigated the association between mechanical power and postoperative pulmonary complications in patients undergoing thoracoscopic lung resection surgery. METHODS: In this single-center, prospective observational study, 622 patients scheduled for thoracoscopic lung resection surgery were included. Volume control mode with lung protective ventilation strategies were implemented in all participants. The primary endpoint was a composite of postoperative pulmonary complications during hospital stay. Multivariable logistic regression models were used to evaluate the association between mechanical power and outcomes. RESULTS: The incidence of pulmonary complications after surgery during hospital stay was 24.6% (150 of 609 patients). The multivariable analysis showed that there was no link between mechanical power and postoperative pulmonary complications. CONCLUSIONS: In patients undergoing thoracoscopic lung resection with standardized lung-protective ventilation, no association was found between mechanical power and postoperative pulmonary complications. TRIAL REGISTRATION: Trial registration number: ChiCTR2200058528, date of registration: April 10, 2022.


Sujet(s)
Ventilation sur poumon unique , Complications postopératoires , Humains , Études prospectives , Mâle , Femelle , Ventilation sur poumon unique/méthodes , Complications postopératoires/épidémiologie , Complications postopératoires/étiologie , Adulte d'âge moyen , Sujet âgé , Pneumonectomie/effets indésirables , Pneumonectomie/méthodes , Thoracoscopie/méthodes , Maladies pulmonaires/étiologie , Maladies pulmonaires/épidémiologie , Chirurgie thoracique vidéoassistée/méthodes , Chirurgie thoracique vidéoassistée/effets indésirables
10.
J Org Chem ; 89(11): 8064-8075, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38757807

RÉSUMÉ

Reported herein is the 1,2-dithiocyanation of alkenes and alkynes via an efficient and facile electrochemical method. This approach not only showed a broad substrate scope and good functional-group compatibility but also avoided stoichiometric oxidants. Different from previous reports, various internal alkynes could be tolerated to provide tetra-substituted alkenes. Further gram-scale-up experiments and synthetic transformation demonstrated a potential application in organic synthesis. This process underwent a radical pathway, as evidenced by our mechanistic studies.

11.
Inorg Chem ; 63(22): 10194-10206, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38767516

RÉSUMÉ

We report details on the synthesis and properties of barium praseodymium tungstate, Ba2PrWO6, a double perovskite that has not been synthesized before. Room-temperature (RT) powder X-ray diffraction identified the most probable space group (SG) as monoclinic I2/m, but it was only slightly distorted from the cubic structure. X-ray photoelectron spectroscopy confirmed that the initial (postsynthesis) material contained praseodymium in both 3+ and 4+ charge states. The former (Pr3+) disappeared after exposure to UV light at RT. Photoluminescence studies of Pr3+ revealed that Ba2PrWO6 is an insulator with a band gap exceeding 4.93 eV. Pressure-dependent Raman spectroscopy excluded the possibility of a phase transition up to 20 GPa; however, measurements between 8 and 873 K signified that there might be a change toward the lower symmetry SG below 200 K. Electron paramagnetic resonance spectra revealed the presence of interstitial oxygen which acts as a deep electron trap.

12.
Front Pharmacol ; 15: 1364827, 2024.
Article de Anglais | MEDLINE | ID: mdl-38799171

RÉSUMÉ

Background: The renin-angiotensin-aldosterone system (RAAS) members, especially Ang II and aldosterone, play key roles in the pathogenesis of diabetic cardiomyopathy (DCM). Angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers combined with aldosterone receptor antagonists (mineralocorticoid receptor antagonists) have substantially improved clinical outcomes in patients with DCM. However, the use of the combination has been limited due to its high risk of inducing hyperkalemia. Methods: Type 1 diabetes was induced in 8-week-old male C57BL/6J mice by intraperitoneal injection of streptozotocin at a dose of 55 mg/kg for 5 consecutive days. Adeno-associated virus 9-mediated short-hairpin RNA (shRNA) was used to knock down the expression of ADAM17 in mice hearts. Eplerenone was administered via gavage at 200 mg/kg daily for 4 weeks. Primary cardiac fibroblasts were exposed to high glucose (HG) in vitro for 24 h to examine the cardiac fibroblasts to myofibroblasts transformation (CMT). Results: Cardiac collagen deposition and CMT increased in diabetic mice, leading to cardiac fibrosis and dysfunction. In addition, ADAM17 expression and activity increased in the hearts of diabetic mice. ADAM17 inhibition and eplerenone treatment both improved diabetes-induced cardiac fibrosis, cardiac hypertrophy and cardiac dysfunction, ADAM17 deficiency combined with eplerenone further reduced the effects of cardiac fibrosis, cardiac hypertrophy and cardiac dysfunction compared with single therapy in vivo. High-glucose stimulation promotes CMT in vitro and leads to increased ADAM17 expression and activity. ADAM17 knockdown and eplerenone pretreatment can reduce the CMT of fibroblasts that is induced by high glucose levels by inhibiting TGFß1/Smad3 activation; the combination of the two can further reduce CMT compared with single therapy in vitro. Conclusion: Our findings indicated that ADAM17 knockout could improve diabetes-induced cardiac dysfunction and remodeling through the inhibition of RAAS overactivation when combined with eplerenone treatment, which reduced TGF-ß1/Smad3 pathway activation-mediated CMT. The combined intervention of ADAM17 deficiency and eplerenone therapy provided additional cardiac protection compared with a single therapy alone without disturbing potassium level. Therefore, the combination of ADAM17 inhibition and eplerenone is a potential therapeutic strategy for human DCM.

13.
J Vis Exp ; (206)2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38738888

RÉSUMÉ

The protocol presented here demonstrates the operation method of ultrasound-guided acupotomy for knee osteoarthritis (KOA), including patient recruitment, preoperative preparation, manual operation, and postoperative care. The purpose of this protocol is to relieve pain and improve knee function in patients with KOA. A total of 60 patients with KOA admitted between June 2022 and June 2023 were treated with ultrasound-guided acupotomy. Pathological changes and knee function scores were compared before and after the treatment. After 1 week of treatment, the synovial thickness of the suprapatellar bursae was significantly lesser than before treatment (p < 0.05), the Hospital for Special Surgery Knee Score (HSS) was significantly higher than before treatment (p < 0.05), the Visual analogue scale (VAS) was significantly lower than those of the control group (p < 0.05) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were significantly lower than those of the control group (p < 0.05). Therefore, ultrasound-guided acupotomy for the treatment of KOA can reduce synovial thickness, relieve pain, improve knee joint function, and have a remarkable curative effect.


Sujet(s)
Thérapie par acupuncture , Gonarthrose , Échographie interventionnelle , Humains , Gonarthrose/imagerie diagnostique , Gonarthrose/thérapie , Gonarthrose/chirurgie , Thérapie par acupuncture/méthodes , Échographie interventionnelle/méthodes , Femelle , Adulte d'âge moyen , Mâle , Sujet âgé
14.
Org Lett ; 26(20): 4329-4334, 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38743509

RÉSUMÉ

A photoinduced deuterodetriazenation of aryltriazenes with CDCl3 under catalyst-free conditions is reported. The reactions featured simple operation, ecofriendly conditions, readily available reagents, inexpensive D sources, precise site selectivity, and a wide range of substrates. Since aryltriazenes could be readily synthesized from arylamine, this protocol can be used as a general method for easily and accurately incorporating deuterium into aromatic systems by using CDCl3 as a D source.

15.
Chin J Integr Med ; 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38816637

RÉSUMÉ

The discovery of novel antitumor agents derived from natural plants is a principal objective of anticancer drug research. Frankincense, a widely recognized natural antitumor medicine, has undergone a systematic review encompassing its species, chemical constituents, and diverse pharmacological activities and mechanisms. The different species of frankincense include Boswellia serrata, Somali frankincense, Boswellia frereana, and Boswellia arabica. Various frankincense extracts and compounds exhibit antitumor, anti-inflammatory, and hepatoprotective properties and antioxidation, memory enhancement, and immunological regulation capabilities. They also have comprehensive effects on regulating flora. Frankincense and its principal chemical constituents have demonstrated promising chemoprophylactic and therapeutic abilities against tumors. This review provides a systematic summary of the mechanism of action underlying the antitumor effects of frankincense and its major constituents, thus laying the foundations for developing effective tumor-combating targets.

17.
RSC Adv ; 14(17): 11914-11920, 2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38623300

RÉSUMÉ

Interfacial Lewis acid-base pairs are commonly found in ZrO2-supported metal catalysts due to the facile generation of oxygen vacancies of ZrO2. These pairs have been reported to play a crucial role in olefin hydroesterification, especially in the absence of acid promoters and ligands. In this study, a series of ZrO2-supported Ru catalysts with ruthenium(iii) chloride and ruthenium(iii) acetylacetonate as precursors were prepared for the styrene hydroesterification. The catalysts were thoroughly characterized by TPR, TEM, EPR, XPS, and FTIR. The Ru precursors significantly influenced the size and electronic properties of Ru clusters, albeit having minimal impact on oxygen vacancies. Mechanistic studies of styrene hydroesterification over ZrO2-supported Ru catalysts revealed that the carbon monoxide insertion followed the hydrogen transfer step to activated styrene. Higher activity is exhibited over ZrO2-supported Ru catalysts prepared with ruthenium(iii) chloride as a precursor, attributed to the lower adsorption strength of CO over Ru clusters, as evidenced by FTIR and DFT calculations.

18.
bioRxiv ; 2024 Mar 16.
Article de Anglais | MEDLINE | ID: mdl-38559152

RÉSUMÉ

As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.

19.
Front Neurol ; 15: 1360741, 2024.
Article de Anglais | MEDLINE | ID: mdl-38560728

RÉSUMÉ

Background: This study aimed to investigate the effects of adjuvant beam radiation therapy (ABRT) on overall survival (OS) in patients with primary single intracranial atypical meningioma (AM), with a focus on age-related outcomes. Methods: We conducted a retrospective study using data from SEER database. Our cohort consisted of patients diagnosed with a primary single intracranial AM tumor and had undergone surgery. The primary endpoint was OS. For survival analysis, univariable and multivariable Cox regression analysis were performed. A multivariable additive Cox model was used to assess the functional relationship between age and OS in patients with or without ABRT. Results: Of the 2,759 patients included, 1,650 underwent gross total resection and 833 received ABRT. Multivariable Cox analysis indicated that ABRT did not significantly influence OS across the entire cohort. According to the multivariable generalized additive Cox model, the relative risk of all-cause mortality increased with advancing age in both ABRT-yes and ABRT-no group. ABRT-yes had a lower relative risk than ABRT-no when age ≤ 55 years old while a higher relative risk when age > 55 years old. Subsequent multivariable Cox analysis showed that ABRT was associated with a significant lower risk for all-cause mortality in patients with age ≤ 55 years old while a significant higher risk in patients with age > 55 years old. Conclusion: Our study found that ABRT enhanced OS in younger primary single intracranial AM patients. But we also revealed a negative correlation between OS and ABRT in older patients.

20.
J Colloid Interface Sci ; 666: 585-593, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38613980

RÉSUMÉ

Capacitive deionization (CDI) is flourishing as an energy-efficient and cost-effective water desalination method. However, challenges such as electrode degradation and fouling have hindered the practical deployment of CDI technology. To address these challenges, the key point of our strategy is applying a hydrophilic coating composed of polyethylene glycol (PEG)-functionalized nano-TiO2/polyvinylidene fluoride (PVDF) to the electrode interface (labeled as APPT electrode). The PEG/PVDF/TiO2 layer not only mitigates the co-ion depletion, but also imparts the activated carbon (AC) electrode hydrophilicity. As anticipated, the APPT electrode possessed an enhanced desalination capacity of 83.54 µmol g-1 and a low energy consumption of 17.99 Wh m-3 in 10 mM sodium chloride solution compared with the bare AC electrode. Notably, the APPT maintained about 93.19 % of its desalination capacity after 50 consecutive adsorption-desorption cycles in the presence of bovine serum albumin (BSA). During the trial, moreover, no obvious overall performance decline was noted in concentration reduction (Δc), water recovery (WR) and productivity (P) over 50 cycles. This strategy realizes energy-efficient, antifouling and stable brackish water desalination and has great promise for practical applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...