Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nat Commun ; 14(1): 1715, 2023 03 27.
Article de Anglais | MEDLINE | ID: mdl-36973253

RÉSUMÉ

Spindle formation in male meiosis relies on the canonical centrosome system, which is distinct from acentrosomal oocyte meiosis, but its specific regulatory mechanisms remain unknown. Herein, we report that DYNLRB2 (Dynein light chain roadblock-type-2) is a male meiosis-upregulated dynein light chain that is indispensable for spindle formation in meiosis I. In Dynlrb2 KO mouse testes, meiosis progression is arrested in metaphase I due to the formation of multipolar spindles with fragmented pericentriolar material (PCM). DYNLRB2 inhibits PCM fragmentation through two distinct pathways; suppressing premature centriole disengagement and targeting NuMA (nuclear mitotic apparatus) to spindle poles. The ubiquitously expressed mitotic counterpart, DYNLRB1, has similar roles in mitotic cells and maintains spindle bipolarity by targeting NuMA and suppressing centriole overduplication. Our work demonstrates that two distinct dynein complexes containing DYNLRB1 or DYNLRB2 are separately used in mitotic and meiotic spindle formations, respectively, and that both have NuMA as a common target.


Sujet(s)
Dynéines , Appareil du fuseau , Souris , Animaux , Mâle , Dynéines/génétique , Dynéines/métabolisme , Appareil du fuseau/métabolisme , Centrosome/métabolisme , Méiose , Métaphase
2.
Nucleic Acids Res ; 49(18): 10465-10476, 2021 10 11.
Article de Anglais | MEDLINE | ID: mdl-34520548

RÉSUMÉ

Telomere binding protein Stn1 forms the CST (Cdc13/CTC1-STN1-TEN1) complex in budding yeast and mammals. Likewise, fission yeast Stn1 and Ten1 form a complex indispensable for telomere protection. We have previously reported that stn1-1, a high-temperature sensitive mutant, rapidly loses telomere DNA at the restrictive temperature due to frequent failure of replication fork progression at telomeres and subtelomeres, both containing repetitive sequences. It is unclear, however, whether Stn1 is required for maintaining other repetitive DNAs such as ribosomal DNA. In this study, we have demonstrated that stn1-1 cells, even when grown at the permissive temperature, exhibited dynamic rearrangements in the telomere-proximal regions of subtelomere and ribosomal DNA repeats. Furthermore, Rad52 and γH2A accumulation was observed at ribosomal DNA repeats in the stn1-1 mutant. The phenotypes exhibited by the stn1-1 allele were largely suppressed in the absence of Reb1, a replication fork barrier-forming protein, suggesting that Stn1 is involved in the maintenance of the arrested replication forks. Collectively, we propose that Stn1 maintains the stability of repetitive DNAs at subtelomeres and rDNA regions.


Sujet(s)
ADN fongique/composition chimique , ADN ribosomique/composition chimique , Séquences répétées d'acides nucléiques , Protéines de Schizosaccharomyces pombe/physiologie , Schizosaccharomyces/génétique , Protéines télomériques/physiologie , Protéines de liaison à l'ADN/génétique , Viabilité microbienne , Mutation , Recombinaison génétique , Réparation de l'ADN par recombinaison , Protéines de Schizosaccharomyces pombe/génétique , Télomère , Protéines télomériques/génétique , Facteurs de transcription/génétique
3.
Elife ; 102021 01 21.
Article de Anglais | MEDLINE | ID: mdl-33476260

RÉSUMÉ

Telomeres are nucleoprotein complexes at the ends of chromosomes and are indispensable for the protection and lengthening of terminal DNA. Despite the evolutionarily conserved roles of telomeres, the telomeric double-strand DNA (dsDNA)-binding proteins have evolved rapidly. Here, we identified double-strand telomeric DNA-binding proteins (DTN-1 and DTN-2) in Caenorhabditis elegans as non-canonical telomeric dsDNA-binding proteins. DTN-1 and DTN-2 are paralogous proteins that have three putative MYB-like DNA-binding domains and bind to telomeric dsDNA in a sequence-specific manner. DTN-1 and DTN-2 form complexes with the single-strand telomeric DNA-binding proteins POT-1 and POT-2 and constitutively localize to telomeres. The dtn-1 and dtn-2 genes function redundantly, and their simultaneous deletion results in progressive germline mortality, which accompanies telomere hyper-elongation and chromosomal bridges. Our study suggests that DTN-1 and DTN-2 are core shelterin components in C. elegans telomeres that act as negative regulators of telomere length and are essential for germline immortality.


Sujet(s)
Protéines de Caenorhabditis elegans/génétique , Caenorhabditis elegans/génétique , Cellules germinales/métabolisme , Protéines télomériques/génétique , Animaux , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Télomère/métabolisme , Protéines télomériques/métabolisme
4.
Life Sci Alliance ; 3(12)2020 12.
Article de Anglais | MEDLINE | ID: mdl-33106324

RÉSUMÉ

Chromosome fusion is a frequent intermediate in oncogenic chromosome rearrangements and has been proposed to cause multiple tumor-driving abnormalities. In conventional experimental systems, however, these abnormalities were often induced by randomly induced chromosome fusions involving multiple different chromosomes. It was therefore not well understood whether a single defined type of chromosome fusion, which is reminiscent of a sporadic fusion in tumor cells, has the potential to cause chromosome instabilities. Here, we developed a human cell-based sister chromatid fusion visualization system (FuVis), in which a single defined sister chromatid fusion is induced by CRISPR/Cas9 concomitantly with mCitrine expression. The fused chromosome subsequently developed extra-acentric chromosomes, including chromosome scattering, indicative of chromothripsis. Live-cell imaging and statistical modeling indicated that sister chromatid fusion generated micronuclei (MN) in the first few cell cycles and that cells with MN tend to display cell cycle abnormalities. The powerful FuVis system thus demonstrates that even a single sporadic sister chromatid fusion can induce chromosome instability and destabilize the cell cycle through MN formation.


Sujet(s)
Instabilité des chromosomes/génétique , Analyse sur cellule unique/méthodes , Échange de chromatides soeurs/physiologie , Systèmes CRISPR-Cas/génétique , Cycle cellulaire/génétique , Division cellulaire/génétique , Chromatides/génétique , Chromatides/anatomopathologie , Chromatides/physiologie , Instabilité des chromosomes/physiologie , Clustered regularly interspaced short palindromic repeats/génétique , Génie génétique/méthodes , Cellules HCT116 , Humains , Microscopie de fluorescence/méthodes , Tumeurs/génétique , Échange de chromatides soeurs/génétique
5.
PLoS Genet ; 15(8): e1008335, 2019 08.
Article de Anglais | MEDLINE | ID: mdl-31454352

RÉSUMÉ

Genomic rearrangements (gross chromosomal rearrangements, GCRs) threatens genome integrity and cause cell death or tumor formation. At the terminus of linear chromosomes, a telomere-binding protein complex, called shelterin, ensures chromosome stability by preventing chromosome end-to-end fusions and regulating telomere length homeostasis. As such, shelterin-mediated telomere functions play a pivotal role in suppressing GCR formation. However, it remains unclear whether the shelterin proteins play any direct role in inhibiting GCR at non-telomeric regions. Here, we have established a GCR assay for the first time in fission yeast and measured GCR rates in various mutants. We found that fission yeast cells lacking shelterin components Taz1 or Rap1 (mammalian TRF1/2 or RAP1 homologues, respectively) showed higher GCR rates compared to wild-type, accumulating large chromosome deletions. Genetic dissection of Rap1 revealed that Rap1 contributes to inhibiting GCRs via two independent pathways. The N-terminal BRCT-domain promotes faithful DSB repair, as determined by I-SceI-mediated DSB-induction experiments; moreover, association with Poz1 mediated by the central Poz1-binding domain regulates telomerase accessibility to DSBs, leading to suppression of de novo telomere additions. Our data highlight unappreciated functions of the shelterin components Taz1 and Rap1 in maintaining genome stability, specifically by preventing non-telomeric GCRs.


Sujet(s)
Réparation de l'ADN , Réarrangement des gènes , Protéines de Schizosaccharomyces pombe/métabolisme , Schizosaccharomyces/génétique , Protéines télomériques/métabolisme , Cassures double-brin de l'ADN , Instabilité du génome , Mutation , Protéines de Schizosaccharomyces pombe/génétique , Complexe shelterine , Homéostasie des télomères , Protéines télomériques/génétique
6.
Cell Rep ; 24(10): 2614-2628.e4, 2018 09 04.
Article de Anglais | MEDLINE | ID: mdl-30184497

RÉSUMÉ

Multiple pathways regulate the repair of double-strand breaks (DSBs) to suppress potentially dangerous ectopic recombination. Both sequence and chromatin context are thought to influence pathway choice between non-homologous end-joining (NHEJ) and homology-driven recombination. To test the effect of repetitive sequences on break processing, we have inserted TG-rich repeats on one side of an inducible DSB at the budding yeast MAT locus on chromosome III. Five clustered Rap1 sites within a break-proximal TG repeat are sufficient to block Mre11-Rad50-Xrs2 recruitment, impair resection, and favor elongation by telomerase. The two sides of the break lose end-to-end tethering and show enhanced, uncoordinated movement. Only the TG-free side is resected and shifts to the nuclear periphery. In contrast to persistent DSBs without TG repeats that are repaired by imprecise NHEJ, nearly all survivors of repeat-proximal DSBs repair the break by a homology-driven, non-reciprocal translocation from ChrIII-R to ChrVII-L. This suppression of imprecise NHEJ at TG-repeat-flanked DSBs requires the Uls1 translocase activity.


Sujet(s)
Cassures double-brin de l'ADN , Réparation de l'ADN/physiologie , Télomère/métabolisme , Translocation génétique/physiologie , Réparation de l'ADN par jonction d'extrémités/génétique , Réparation de l'ADN par jonction d'extrémités/physiologie , Helicase/génétique , Helicase/métabolisme , Réparation de l'ADN/génétique , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Télomère/génétique , Translocation génétique/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE