Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 18 de 18
Filtrer
1.
Nature ; 630(8015): 198-205, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38720074

RÉSUMÉ

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Sujet(s)
Phosphatidylinositol 3-kinases de classe Ib , Leucémies , Transduction du signal , p21-Activated Kinases , Animaux , Humains , Souris , Lignée cellulaire , Phosphatidylinositol 3-kinases de classe Ib/génétique , Phosphatidylinositol 3-kinases de classe Ib/métabolisme , Cytarabine/pharmacologie , Cytarabine/usage thérapeutique , Leucémies/traitement médicamenteux , Leucémies/enzymologie , Leucémies/génétique , Leucémies/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Phosphorylation oxydative/effets des médicaments et des substances chimiques , p21-Activated Kinases/antagonistes et inhibiteurs , p21-Activated Kinases/métabolisme , Phosphorylation , Tests d'activité antitumorale sur modèle de xénogreffe
2.
Curr Protoc ; 3(5): e738, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-37184117

RÉSUMÉ

Protein lysine acetylation refers to the covalent transfer of an acetyl moiety from acetyl coenzyme A to the epsilon-amino group of a lysine residue and is critical for regulating protein functions in almost all living cells or organisms. Studies in the past decade have demonstrated the unexpected finding that acetylation-like acylation, such as succinylation, propionylation, butyrylation, crotonylation, and lactylation, is also present in histones and many non-histone proteins. Acetylation and acetylation-like acylation serve as reversible on/off switches for regulating protein function while interplaying with other post-translational modifications (such as phosphorylation and methylation) in a codified manner. Lysine acetylation and acetylation-like acylation are important for regulating different cellular and developmental processes in normal and pathological states. Thus, the detection of such modifications is important for related basic research and molecular diagnostics. Traditionally, lysine acetylation is detected by autoradiography, but recent decades have seen great improvement in the quality of site-specific antibodies against acetylation (or acetylation-like acylation), thereby providing competitive alternatives to the use of radioactive acetate and acetyl-coenzyme A for in vivo and in vitro labeling, respectively. This article describes protocols for the detection of lysine acetylation and acetylation-like acylation with site-specific antibodies to complement extant autoradiography-based methods (Pelletier et al., 2017). © 2023 Wiley Periodicals LLC. Basic Protocol 1: Acylation assays in vitro Basic Protocol 2: Determination of in vivo acylation.


Sujet(s)
Lysine , Maturation post-traductionnelle des protéines , Acétylation , Lysine/composition chimique , Lysine/métabolisme , Acylation , Histone/composition chimique , Histone/métabolisme , Acétyl coenzyme A/métabolisme , Anticorps/métabolisme
3.
bioRxiv ; 2023 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-38328043

RÉSUMÉ

Phosphoinositide 3-kinase gamma (PI3Kγ) is implicated as a target to repolarize tumor-associated macrophages and promote anti-tumor immune responses in solid cancers. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid, and dendritic lineages. This dependency is characterized by innate inflammatory signaling and activation of phosphoinositide 3-kinase regulatory subunit 5 ( PIK3R5 ), which encodes a regulatory subunit of PI3Kγ and stabilizes the active enzymatic complex. Mechanistically, we identify p21 (RAC1) activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency independently of Akt kinase. PI3Kγ inhibition dephosphorylates PAK1, activates a transcriptional network of NFκB-related tumor suppressor genes, and impairs mitochondrial oxidative phosphorylation. We find that treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukemias with activated PIK3R5 , either at baseline or by exogenous inflammatory stimulation. Notably, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukemia xenografts with low baseline PIK3R5 expression, as residual leukemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Taken together, our study reveals a targetable dependency on PI3Kγ/PAK1 signaling that is amenable to near-term evaluation in patients with acute leukemia.

4.
Sci Adv ; 6(4): eaax0021, 2020 01.
Article de Anglais | MEDLINE | ID: mdl-32010779

RÉSUMÉ

Lysine acetyltransferase 6A (KAT6A) and its paralog KAT6B form stoichiometric complexes with bromodomain- and PHD finger-containing protein 1 (BRPF1) for acetylation of histone H3 at lysine 23 (H3K23). We report that these complexes also catalyze H3K23 propionylation in vitro and in vivo. Immunofluorescence microscopy and ATAC-See revealed the association of this modification with active chromatin. Brpf1 deletion obliterates the acylation in mouse embryos and fibroblasts. Moreover, we identify BRPF1 variants in 12 previously unidentified cases of syndromic intellectual disability and demonstrate that these cases and known BRPF1 variants impair H3K23 propionylation. Cardiac anomalies are present in a subset of the cases. H3K23 acylation is also impaired by cancer-derived somatic BRPF1 mutations. Valproate, vorinostat, propionate and butyrate promote H3K23 acylation. These results reveal the dual functionality of BRPF1-KAT6 complexes, shed light on mechanisms underlying related developmental disorders and various cancers, and suggest mutation-based therapy for medical conditions with deficient histone acylation.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Protéines de liaison à l'ADN/métabolisme , Histone acetyltransferases/métabolisme , Histone/métabolisme , Tumeurs/étiologie , Tumeurs/métabolisme , Troubles du développement neurologique/étiologie , Troubles du développement neurologique/métabolisme , Acétylation , Protéines adaptatrices de la transduction du signal/génétique , Séquence d'acides aminés , Animaux , Encéphale/malformations , Encéphale/imagerie diagnostique , Lignée cellulaire , Analyse de mutations d'ADN , Protéines de liaison à l'ADN/génétique , Prédisposition aux maladies , Prédisposition génétique à une maladie , Histone acetyltransferases/génétique , Humains , Imagerie par résonance magnétique , Souris , Souris knockout , Modèles biologiques , Complexes multiprotéiques/métabolisme , Mutation , Tumeurs/diagnostic , Troubles du développement neurologique/diagnostic , Phénotype , Liaison aux protéines , Motifs et domaines d'intéraction protéique , Maturation post-traductionnelle des protéines , Syndrome
5.
Am J Hum Genet ; 100(1): 91-104, 2017 Jan 05.
Article de Anglais | MEDLINE | ID: mdl-27939640

RÉSUMÉ

Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.


Sujet(s)
Protéines adaptatrices de la transduction du signal/génétique , Chromatine/métabolisme , Histone/métabolisme , Déficience intellectuelle/génétique , Mutation , Protéines nucléaires/génétique , Acétylation , Adolescent , Allèles , Animaux , Protéines de transport/génétique , Enfant , Chromatine/composition chimique , Protéines de liaison à l'ADN , Incapacités de développement/génétique , Face/malformations , Femelle , Histone acetyltransferases/génétique , Humains , Lysine/métabolisme , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Hypotonie musculaire/génétique , Syndrome
6.
J Clin Invest ; 126(9): 3247-62, 2016 09 01.
Article de Anglais | MEDLINE | ID: mdl-27500495

RÉSUMÉ

Hematopoietic stem cells (HSCs) serve as a life-long reservoir for all blood cell types and are clinically useful for a variety of HSC transplantation-based therapies. Understanding the role of chromatin organization and regulation in HSC homeostasis may provide important insights into HSC development. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator that possesses 4 nucleosome-binding domains and activates 3 lysine acetyltransferases (KAT6A, KAT6B, and KAT7), suggesting that this protein has the potential to stimulate crosstalk between different chromatin modifications. Here, we investigated the function of BRPF1 in hematopoiesis by selectively deleting its gene in murine blood cells. Brpf1-deficient pups experienced early lethality due to acute bone marrow failure and aplastic anemia. The mutant bone marrow and fetal liver exhibited severe deficiency in HSCs and hematopoietic progenitors, along with elevated reactive oxygen species, senescence, and apoptosis. BRPF1 deficiency also reduced the expression of multipotency genes, including Slamf1, Mecom, Hoxa9, Hlf, Gfi1, Egr, and Gata3. Furthermore, BRPF1 was required for acetylation of histone H3 at lysine 23, a highly abundant but not well-characterized epigenetic mark. These results identify an essential role of the multivalent chromatin regulator BRPF1 in definitive hematopoiesis and illuminate a potentially new avenue for studying epigenetic networks that govern HSC ontogeny.


Sujet(s)
Protéines de transport/génétique , Protéines de transport/physiologie , Hématopoïèse , Cellules souches hématopoïétiques/cytologie , Protéines adaptatrices de la transduction du signal , Animaux , Apoptose , Cellules de la moelle osseuse/métabolisme , Vieillissement de la cellule , Chromatine/métabolisme , Protéines de liaison à l'ADN , Épigenèse génétique , Femelle , Délétion de gène , Transplantation de cellules souches hématopoïétiques , Histone acetyltransferases/métabolisme , Histone/métabolisme , Homéostasie , Foie/embryologie , Mâle , Souris , Souris de lignée C57BL , Domaines protéiques , Espèces réactives de l'oxygène/métabolisme , Rate/métabolisme , Thymus (glande)/métabolisme
7.
Nucleic Acids Res ; 44(1): 472-84, 2016 Jan 08.
Article de Anglais | MEDLINE | ID: mdl-26626149

RÉSUMÉ

BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation.


Sujet(s)
Protéines adaptatrices de la transduction du signal/composition chimique , Protéines adaptatrices de la transduction du signal/métabolisme , Chromatine/métabolisme , Protéines nucléaires/composition chimique , Protéines nucléaires/métabolisme , Nucléosomes/métabolisme , Motifs et domaines d'intéraction protéique , Acétylation , Protéines adaptatrices de la transduction du signal/génétique , Séquence d'acides aminés , Chromatine/génétique , ADN/composition chimique , ADN/métabolisme , Protéines de liaison à l'ADN , Histone/métabolisme , Humains , Modèles moléculaires , Données de séquences moléculaires , Complexes multiprotéiques , Protéines nucléaires/génétique , Nucléosomes/génétique , Liaison aux protéines , Conformation des protéines , Stabilité protéique , Alignement de séquences
8.
J Biol Chem ; 291(6): 2647-63, 2016 Feb 05.
Article de Anglais | MEDLINE | ID: mdl-26677226

RÉSUMÉ

To interpret epigenetic information, chromatin readers utilize various protein domains for recognition of DNA and histone modifications. Some readers possess multidomains for modification recognition and are thus multivalent. Bromodomain- and plant homeodomain-linked finger-containing protein 3 (BRPF3) is such a chromatin reader, containing two plant homeodomain-linked fingers, one bromodomain and a PWWP domain. However, its molecular and biological functions remain to be investigated. Here, we report that endogenous BRPF3 preferentially forms a tetrameric complex with HBO1 (also known as KAT7) and two other subunits but not with related acetyltransferases such as MOZ, MORF, TIP60, and MOF (also known as KAT6A, KAT6B, KAT5, and KAT8, respectively). We have also characterized a mutant mouse strain with a lacZ reporter inserted at the Brpf3 locus. Systematic analysis of ß-galactosidase activity revealed dynamic spatiotemporal expression of Brpf3 during mouse embryogenesis and high expression in the adult brain and testis. Brpf3 disruption, however, resulted in no obvious gross phenotypes. This is in stark contrast to Brpf1 and Brpf2, whose loss causes lethality at E9.5 and E15.5, respectively. In Brpf3-null mice and embryonic fibroblasts, RT-quantitative PCR uncovered no changes in levels of Brpf1 and Brpf2 transcripts, confirming no compensation from them. These results indicate that BRPF3 forms a functional tetrameric complex with HBO1 but is not required for mouse development and survival, thereby distinguishing BRPF3 from its paralogs, BRPF1 and BRPF2.


Sujet(s)
Embryon de mammifère/enzymologie , Développement embryonnaire , Histone acetyltransferases/métabolisme , Complexes multienzymatiques/métabolisme , Animaux , Perte de l'embryon/enzymologie , Perte de l'embryon/génétique , Cellules HEK293 , Histone acetyltransferases/génétique , Humains , Souris , Souches mutantes de souris , Complexes multienzymatiques/génétique
10.
PLoS Genet ; 11(3): e1005034, 2015 Mar.
Article de Anglais | MEDLINE | ID: mdl-25757017

RÉSUMÉ

Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.


Sujet(s)
Protéines de transport/génétique , Gyrus denté/métabolisme , Épigenèse génétique/génétique , Histone acetyltransferases/métabolisme , Morphogenèse/génétique , Acétylation , Protéines adaptatrices de la transduction du signal , Animaux , Protéines de transport/métabolisme , Différenciation cellulaire/génétique , Protéines de liaison à l'ADN , Gyrus denté/croissance et développement , Gyrus denté/anatomopathologie , Hippocampe/croissance et développement , Hippocampe/anatomopathologie , Histone acetyltransferases/génétique , Histone/métabolisme , Humains , Souris , Cellules souches neurales/métabolisme , Cellules souches neurales/anatomopathologie , Prosencéphale/embryologie , Prosencéphale/croissance et développement , Prosencéphale/métabolisme , Maturation post-traductionnelle des protéines/génétique , Protéines à domaine boîte-T/génétique
11.
J Biol Chem ; 290(18): 11349-64, 2015 May 01.
Article de Anglais | MEDLINE | ID: mdl-25773539

RÉSUMÉ

With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs.


Sujet(s)
Protéines de transport/métabolisme , Chromatine/métabolisme , Développement embryonnaire , Protéines adaptatrices de la transduction du signal , Animaux , Lignée cellulaire , Prolifération cellulaire , Protéines de liaison à l'ADN , Femelle , Fibroblastes/cytologie , Hématopoïèse , Souris , Néovascularisation physiologique , Anomalies du tube neural/métabolisme , Placenta/vascularisation , Placenta/métabolisme , Grossesse , Vésicule vitelline/vascularisation , Vésicule vitelline/embryologie
12.
Genes Dev ; 27(18): 2009-24, 2013 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-24065767

RÉSUMÉ

Histone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)-Zn knuckle-PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit. Native BRPF1 complexes can contain either MOZ/MORF or HBO1 as catalytic acetyltransferase subunit. Interestingly, while the previously reported HBO1 complexes containing JADE scaffold proteins target histone H4, the HBO1-BRPF1 complex acetylates only H3 in chromatin. We mapped a small region to the N terminus of scaffold proteins responsible for histone tail selection on chromatin. Thus, alternate choice of subunits associated with HBO1 can switch its specificity between H4 and H3 tails. These results uncover a crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit.


Sujet(s)
Histone acetyltransferases/métabolisme , Histone/métabolisme , Acétylation , Protéines adaptatrices de la transduction du signal/métabolisme , Séquence d'acides aminés , Chromatine/métabolisme , Protéines de liaison à l'ADN , Cellules HEK293 , Cellules HeLa , Histone acetyltransferases/composition chimique , Histone acetyltransferases/génétique , Protéines à homéodomaine/métabolisme , Humains , Méthylation , Données de séquences moléculaires , Protéines nucléaires/métabolisme , Liaison aux protéines , Structure tertiaire des protéines , Sous-unités de protéines/composition chimique , Sous-unités de protéines/métabolisme , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Alignement de séquences , Spécificité du substrat , Facteurs de transcription/composition chimique , Facteurs de transcription/métabolisme , Protéines suppresseurs de tumeurs/composition chimique , Protéines suppresseurs de tumeurs/métabolisme
13.
J Biol Chem ; 288(18): 12791-804, 2013 May 03.
Article de Anglais | MEDLINE | ID: mdl-23515309

RÉSUMÉ

Ectopic expression of transcription factors has been shown to reprogram somatic cells into induced pluripotent stem (iPS) cells. It remains largely unexplored how this process is regulated by post-translational modifications. Several reprogramming factors possess conserved sumoylation sites, so we investigated whether and how this modification regulates reprogramming of fibroblasts into iPS cells. Substitution of the sole sumoylation site of the Krüppel-like factor (KLF4), a well known reprogramming factor, promoted iPS cell formation. In comparison, much smaller effects on reprogramming were observed for sumoylation-deficient mutants of SOX2 and OCT4, two other classical reprogramming factors. We also analyzed KLF2, a KLF4 homolog and a member of the KLF family of transcription factors with a known role in reprogramming. KLF2 was sumoylated at two conserved neighboring motifs, but substitution of the key lysine residues only stimulated reprogramming slightly. KLF5 is another KLF member with an established link to embryonic stem cell pluripotency. Interestingly, although it was much more efficiently sumoylated than either KLF2 or KLF4, KLF5 was inactive in reprogramming, and its sumoylation was not responsible for this deficiency. Furthermore, sumoylation of KLF4 but not KLF2 or KLF5 stimulated adipocyte differentiation. These results thus demonstrate the importance KLF4 sumoylation in regulating pluripotency and adipocyte differentiation.


Sujet(s)
Adipocytes/métabolisme , Différenciation cellulaire , Cellules souches pluripotentes induites/métabolisme , Facteurs de transcription Krüppel-like/métabolisme , Sumoylation , Cellules 3T3-L1 , Adipocytes/cytologie , Animaux , Cellules HEK293 , Humains , Cellules souches pluripotentes induites/cytologie , Facteur-4 de type Kruppel , Facteurs de transcription Krüppel-like/génétique , Souris , Facteur de transcription Oct-3/génétique , Facteur de transcription Oct-3/métabolisme , Facteurs de transcription SOX-B1/génétique , Facteurs de transcription SOX-B1/métabolisme
14.
J Biol Chem ; 288(8): 5591-605, 2013 Feb 22.
Article de Anglais | MEDLINE | ID: mdl-23297420

RÉSUMÉ

Histone deacetylase 4 (HDAC4) and its paralogs, HDAC5, -7, and -9 (all members of class IIa), possess multiple phosphorylation sites crucial for 14-3-3 binding and subsequent nuclear export. cAMP signaling stimulates nuclear import of HDAC4 and HDAC5, but the underlying mechanisms remain to be elucidated. Here we show that cAMP potentiates nuclear localization of HDAC9. Mutation of an SP motif conserved in HDAC4, -5, and -9 prevents cAMP-stimulated nuclear localization. Unexpectedly, this treatment inhibits phosphorylation at the SP motif, indicating an inverse relationship between the phosphorylation event and nuclear import. Consistent with this, leptomycin B-induced nuclear import and adrenocorticotropic hormone (ACTH) treatment result in the dephosphorylation at the motif. Moreover, the modification synergizes with phosphorylation at a nearby site, and similar kinetics was observed for both phosphorylation events during myoblast and adipocyte differentiation. These results thus unravel a previously unrecognized mechanism whereby cAMP promotes dephosphorylation and differentially regulates multisite phosphorylation and the nuclear localization of class IIa HDACs.


Sujet(s)
AMP cyclique/métabolisme , Histone deacetylases/biosynthèse , Cellules 3T3 , Transport nucléaire actif , Motifs d'acides aminés , Animaux , Lignée cellulaire tumorale , Noyau de la cellule/métabolisme , Cyclic AMP-Dependent Protein Kinases/métabolisme , Cytoplasme/métabolisme , Cellules HEK293 , Cellules HeLa , Histone deacetylases/composition chimique , Humains , Insectes , Souris , Phosphorylation , Plasmides/métabolisme , Transduction du signal
15.
J Mol Biol ; 424(5): 328-38, 2012 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-23063713

RÉSUMÉ

MORF [MOZ (monocytic leukemia zinc-finger protein)-related factor] and MOZ are catalytic subunits of histone acetyltransferase (HAT) complexes essential in hematopoiesis, neurogenesis, skeletogenesis and other developmental programs and implicated in human leukemias. The canonical HAT domain of MORF/MOZ is preceded by a tandem of plant homeodomain (PHD) fingers whose biological roles and requirements for MORF/MOZ activity are unknown. Here, we demonstrate that the tandem PHD1/2 fingers of MORF recognize the N-terminal tail of histone H3. Acetylation of Lys9 (H3K9ac) or Lys14 (H3K14ac) enhances binding of MORF PHD1/2 to unmodified H3 peptides twofold to threefold. The selectivity for acetylated H3 tail is conserved in the double PHD1/2 fingers of MOZ. This interaction requires the intact N-terminus of histone H3 and is inhibited by trimethylation of Lys4. Biochemical analysis using NMR, fluorescence spectroscopy and mutagenesis identified key amino acids of MORF PHD1/2 necessary for the interaction with histones. Fluorescence microscopy and immunoprecipitation experiments reveal that both PHD fingers are required for binding to H3K14ac in vivo and localization to chromatin. The HAT assays indicate that the interaction with H3K14ac may promote enzymatic activity in trans. Together, our data suggest that the PHD1/2 fingers play a role in MOZ/MORF HATs association with the chromatic regions enriched in acetylated marks.


Sujet(s)
Chromatine/métabolisme , Histone acetyltransferases/métabolisme , Histone/métabolisme , Séquence d'acides aminés , Histone acetyltransferases/composition chimique , Humains , Immunoprécipitation , Spectroscopie par résonance magnétique , Modèles biologiques , Données de séquences moléculaires , Mutagenèse dirigée , Liaison aux protéines , Spectrométrie de fluorescence
16.
Methods Mol Biol ; 809: 445-64, 2012.
Article de Anglais | MEDLINE | ID: mdl-22113293

RÉSUMÉ

Protein lysine acetyltransferases (KATs) catalyze acetylation of the ε-amino group on a specific lysine residue, and this posttranslational modification is important for regulating the function and activities of thousands of proteins in diverse organisms from bacteria to humans. Interestingly, many known KATs exist in multisubunit complexes and complex formation is important for their proper structure, function, and regulation. Thus, it is necessary to reconstitute enzymatically active complexes for studying the relationship between subunits and determining structures of the complexes. Due to inherent limitations of bacterial and mammalian expression systems, baculovirus-mediated protein expression in insect cells has proven useful for assembling such multisubunit complexes. Related to this, we have adopted such an approach for reconstituting active tetrameric complexes of monocytic leukemia zinc (MOZ, finger protein, recently renamed MYST3 or KAT6A) and MOZ-related factor (MORF, also known as MYST4 or KAT6B), two KATs directly linked to development of leukemia and self-renewal of stem cells. Herein, we use these complexes as examples to describe the related procedures. Similar methods have been used for reconstituting active complexes of histone deacetylases, lysine demethylases, and ubiquitin ligases, so this simple approach can be adapted for molecular dissection of various multisubunit complexes.


Sujet(s)
Acetyltransferases/composition chimique , Acetyltransferases/métabolisme , Lysine/métabolisme , Acetyltransferases/génétique , Animaux , Baculoviridae/génétique , Lignée cellulaire , Sous-unités de protéines , Spodoptera
17.
Proc Natl Acad Sci U S A ; 104(11): 4606-11, 2007 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-17360571

RÉSUMÉ

The high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity. Through screening of approximately 20,000 microbial extracts, 12 hits were identified with broad-spectrum antifungal activity. Seven of them showed little cytotoxicity against human hepatoma cells. Fractionation of the active extracts revealed beauvericin (BEA) as the most potent component, because it dramatically synergized KTC activity against diverse fungal pathogens by a checkerboard assay. Significantly, in our immunocompromised mouse model, combinations of BEA (0.5 mg/kg) and KTC (0.5 mg/kg) prolonged survival of the host infected with Candida parapsilosis and reduced fungal colony counts in animal organs including kidneys, lungs, and brains. Such an effect was not achieved even with the high dose of 50 mg/kg KTC. These data support synergism between BEA and KTC and thereby a prospective strategy for antifungal therapy.


Sujet(s)
Antifongiques/pharmacologie , Depsipeptides/administration et posologie , Association médicamenteuse , Évaluation préclinique de médicament/méthodes , Kétoconazole/administration et posologie , Mycoses/traitement médicamenteux , Algorithmes , Animaux , Lignée cellulaire , Modèles animaux de maladie humaine , Résistance des champignons aux médicaments/génétique , Humains , Sujet immunodéprimé , Souris , Tests de sensibilité microbienne
18.
Mol Immunol ; 43(10): 1534-40, 2006 Apr.
Article de Anglais | MEDLINE | ID: mdl-16359730

RÉSUMÉ

CD9 is a glycoprotein of the transmembrane 4 superfamily (TM4SF) and is involved in various cellular processes. In this study, we describe the isolation of the full-length cDNA encoding for CD9 molecule (daCD9) of red stingray, Dasyatis akajei. This 1252 bp cDNA was isolated from leukocyte cDNA library and contains 681 bp open reading frame encoding 226 amino acid residues. Amino acid sequences analysis and structure prediction display approximately 50% identity to higher vertebrates with the presence of conserved structures, including the four transmembrane domains and certain characteristic residues. Southern blot analysis shows that daCD9 exists as a single copy gene. Northern blot analysis reveals that daCD9 is highly expressed in gill and spleen although its expression can be found in other tissues suggesting daCD9 might play an important role in immune defense in this fish.


Sujet(s)
Antigènes CD/classification , Antigènes CD/génétique , Elasmobranchii/immunologie , Glycoprotéines membranaires/classification , Glycoprotéines membranaires/génétique , Séquence d'acides aminés , Animaux , Antigènes CD/métabolisme , Clonage moléculaire , ADN complémentaire/génétique , Elasmobranchii/génétique , Glycoprotéines membranaires/métabolisme , Données de séquences moléculaires , Phylogenèse , ARN messager/analyse , ARN messager/métabolisme , Antigène CD9 , Distribution tissulaire , Transcription génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE