Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.557
Filtrer
1.
Eur J Med Chem ; 277: 116712, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39106657

RÉSUMÉ

Quaternization of ruthenium complexes may be a promising strategy for the development of new antibiotics. In response to the increasing bacterial resistance, we integrated the quaternary amine structure into the design of ruthenium complexes and evaluated their antibacterial activity. All the ruthenium complexes showed good antibacterial activity against the tested Staphylococcus aureus (S. aureus). Ru-8 was the most effective antibacterial agent that displayed excellent antibacterial activity against S. aureus (MIC = 0.78-1.56 µg/mL). In vitro experiments showed that all nine ruthenium complexes had low hemolytic toxicity to rabbit erythrocytes. Notably, Ru-8 was found to disrupt bacterial cell membranes, alter their permeability, and induce ROS production in bacteria, all the above leading to the death of bacteria without inducing drug resistance. To further explore the antibacterial activity of Ru-8in vivo, we established a mouse skin wound infection model and a G. mellonella larvae infection model. Ru-8 exhibited significant antibacterial efficacy against S. aureus in vivo and low toxicity to mouse tissues. The Ru-8 showed low toxicity to Raw264.7 cells (mouse monocyte macrophage leukemia cells). This study indicates that the ruthenium complex ruthenium quaternary was a promising strategy for the development of new antibacterial agents.

2.
Int J Mol Med ; 54(4)2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39092569

RÉSUMÉ

Non­SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single­cell sequencing data, gene­set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M­phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3­kinase (PI3K)­Akt­mammalian target of rapamycin (mTOR)/c­Myc signaling pathway and epithelial­mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease­specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M­phase transition, activation of the PI3K­Akt­mTOR/c­Myc signaling pathway and EMT progression in human liver cancer cells.


Sujet(s)
Prolifération cellulaire , Tumeurs du foie , Phosphatidylinositol 3-kinases , Protéines proto-oncogènes c-akt , Transduction du signal , Sérine-thréonine kinases TOR , Humains , Sérine-thréonine kinases TOR/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Tumeurs du foie/génétique , Tumeurs du foie/anatomopathologie , Tumeurs du foie/métabolisme , Transduction du signal/génétique , Phosphatidylinositol 3-kinases/métabolisme , Mâle , Femelle , Prolifération cellulaire/génétique , Carcinogenèse/génétique , Carcinogenèse/anatomopathologie , Carcinogenèse/métabolisme , Adulte d'âge moyen , Régulation de l'expression des gènes tumoraux , Évolution de la maladie , Lignée cellulaire tumorale , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Transition épithélio-mésenchymateuse/génétique , Apoptose/génétique , Mouvement cellulaire/génétique , Pronostic
3.
Plants (Basel) ; 13(15)2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39124225

RÉSUMÉ

Kentucky bluegrass (Poa pratensis L.), a widely used cool-season turfgrass, shows a high sensitivity to soil salinity. Clarifying the adaptative mechanisms of Kentucky bluegrass that serve to improve its salt tolerance in saline environments is urgent for the application of this turfgrass in salt-affected regions. In this study, physiological responses of the Kentucky bluegrass cultivars "Explorer" and "Blue Best" to NaCl treatment, as well as gene expressions related to photosynthesis, ion transport, and ROS degradation, were analyzed. The results showed that the growth of "Explorer" was obviously better compared to "Blue Best" under 400 mM NaCl treatment. "Explorer" exhibited a much stronger photosynthetic capacity than "Blue Best" under NaCl treatment, and the expression of key genes involved in chlorophyll biosynthesis, photosystem II, and the Calvin cycle in "Explorer" was greatly induced by salt treatment. Compared with "Blue Best", "Explorer" could effectively maintain Na+/K+ homeostasis in its leaves under NaCl treatment, which can be attributed to upregulated expression of genes, such as HKT1;5, HAK5, and SKOR. The relative membrane permeability and contents of O2- and H2O2 in "Explorer" were significantly lower than those in "Blue Best" under NaCl treatment, and, correspondingly, the activities of SOD and POD in the former were significantly higher than in the latter. Moreover, the expression of genes involved in the biosynthesis of enzymes in the ROS-scavenging system of "Explorer" was immediately upregulated after NaCl treatment. Additionally, free proline and betaine are important organic osmolytes for maintaining hydration status in Kentucky bluegrass under NaCl treatment, as the contents of these metabolites in "Explorer" were significantly higher than in "Blue Best". This work lays a theoretical basis for the improvement of salt tolerance in Kentucky bluegrass.

4.
Article de Anglais | MEDLINE | ID: mdl-39098431

RÉSUMÉ

PURPOSE: Optimal local treatment for pulmonary oligometastases from colorectal cancer (CRC) remains unclear. We aimed to compare the long-term survival outcomes between surgery and stereotactic body radiotherapy (SBRT) as the initial local treatment for CRC pulmonary oligometastases. MATERIALS AND METHODS: We retrospectively reviewed 335 consecutive patients who initially underwent surgery or SBRT for CRC pulmonary metastases from 2011 to 2022, and 251 patients (173 surgery and 78 SBRT) were ultimately included. Freedom from intrathoracic progression (FFIP), progression-free survival (PFS), and overall survival (OS) were compared using stabilized inverse probability of treatment weighting (sIPTW) analysis. In addition, patterns of intrathoracic progression and subsequent treatment were analyzed. RESULTS: Median follow-up was 61.6 months for surgery and 54.4 months for SBRT. After sIPTW adjustment, significant differences emerged in both FFIP and PFS between surgery and SBRT (FFIP: hazard ratio [HR] = 0.50, 95% confidence interval [CI], 0.31-0.79; PFS: HR = 0.56, 95% CI, 0.36-0.87). The 3- and 5-year FFIP rates were 58.6% and 54.8%, respectively, after surgery, and 34.6% and 31.3%, respectively, after SBRT (P = 0.006). The 3- and 5-year PFS rates were 49.4% and 45.2%, respectively, after surgery, and 28.8% and 26.1%, respectively, after SBRT (P = 0.010). However, OS was not significantly affected by treatment approach (HR = 0.93, 95% CI, 0.49-1.76). The 3- and 5-year OS rates were 85.9% and 73.1%, respectively, after surgery, and 78.9% and 68.7%, respectively, after SBRT (P = 0.849). Recurrence at the treated site was more prevalent after SBRT than after surgery (33.3% vs. 16.9%), whereas new intrathoracic tumors occurred more frequently after surgery than after SBRT (71.8% vs. 43.1%). Both groups chose radiotherapy as the primary local salvage treatment. CONCLUSIONS: Notwithstanding the significant differences in FFIP and PFS between surgery and SBRT, the long-term survival of patients with CRC pulmonary oligometastases did not depend on the initial choice of the local treatment approach.

5.
Materials (Basel) ; 17(15)2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39124485

RÉSUMÉ

The low delamination tendency and high damage tolerance of three-dimensional (3D) braided composites highlight their significant potential in handling defects. To enhance the engineering potential of three-dimensional four-directional (3D4d) braided composites and assess the failure mode of hole defects, this study introduces a series of 3D4d braided composites with prefabricated holes, studying their compressive properties and failure mechanisms through experimental and finite element methods. Digital image correlation (DIC) was used to monitor the compressive strain on the surface of materials. Scanning acoustic microscope (SAM) and scanning electron microscopy (SEM) were used to characterize the longitudinal compression failure mode inside the material. A macroscopic model is established, and the porous materials are predicted by using the general braided composite material prediction theory. While reducing the forecast cost, the error is also controlled within 21%. The analysis of failure mechanisms elucidates the damage extension mode, and the porous damage tolerance ability aligns closely with the bearing mode of braided material structure. Different braiding angles will lead to different bearing modes of materials. Under longitudinal compression, the average strength loss of 15° specimens is 38.21%, and that of 30° specimens is 8.1%. The larger the braided angle, the stronger the porous damage tolerance. Different types of prefabricated holes will also affect their mechanical properties and damage tolerance.

6.
Stem Cell Res Ther ; 15(1): 215, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39020413

RÉSUMÉ

BACKGROUND: A favorable regenerative microenvironment is essential for peripheral nerve regeneration. Neural tissue-specific extracellular matrix (ECM) is a natural material that helps direct cell behavior and promote axon regeneration. Both bone marrow-derived mesenchymal stem cells (BMSCs) and adipose-derived mesenchymal stem cells (ADSCs) transplantation are effective in repairing peripheral nerve injury (PNI). However, there is no study that characterizes the in vivo microenvironmental characteristics of these two MSCs for the early repair of PNI when combined with neural tissue-derived ECM materials, i.e., acellular nerve allograft (ANA). METHODS: In order to investigate biological characteristics, molecular mechanisms of early stage, and effectiveness of ADSCs- or BMSCs-injected into ANA for repairing PNI in vivo, a rat 10 mm long sciatic nerve defect model was used. We isolated primary BMSCs and ADSCs from bone marrow and adipose tissue, respectively. First, to investigate the in vivo response characteristics and underlying molecular mechanisms of ANA combined with BMSCs or ADSCs, eighty-four rats were randomly divided into three groups: ANA group, ANA+BMSC group, and ANA+ADSC group. We performed flow cytometry, RT-PCR, and immunofluorescence staining up to 4 weeks postoperatively. To further elucidate the underlying molecular mechanisms, changes in long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) were systematically investigated using whole transcriptome sequencing. We then constructed protein-protein interaction networks to find 10 top ranked hub genes among differentially expressed mRNAs. Second, in order to explore the effectiveness of BMSCs and ADSCs on neural tissue-derived ECM materials for repairing PNI, sixty-eight rats were randomized into four groups: ANA group, ANA+BMSC group, ANA+ADSC group, and AUTO group. In the ANA+BMSC and ANA+ADSC groups, ADSCs/BMSCs were equally injected along the long axis of the 10-mm ANA. Then, we performed histological and functional assessments up to 12 weeks postoperatively. RESULTS: The results of flow cytometry and RT-PCR showed that ANA combined with BMSCs exhibited more significant immunomodulatory effects, as evidenced by the up-regulation of interleukin (IL)-10, down-regulation of IL-1ß and tumor necrosis factor-alpha (TNF-α) expression, promotion of M1-type macrophage polarization to M2-type, and a significant increase in the number of regulatory T cells (Tregs). ANA combined with ADSCs exhibited more pronounced features of pro-myelination and angiogenesis, as evidenced by the up-regulation of myelin-associated protein gene (MBP and MPZ) and angiogenesis-related factors (TGF-ß, VEGF). Moreover, differentially expressed genes from whole transcriptome sequencing results further indicated that ANA loaded with BMSCs exhibited notable immunomodulatory effects and ANA loaded with ADSCs was more associated with angiogenesis, axonal growth, and myelin formation. Notably, ANA infused with BMSCs or ADSCs enhanced peripheral nerve regeneration and motor function recovery with no statistically significant differences. CONCLUSIONS: This study revealed that both ANA combined with BMSCs and ADSCs enhance peripheral nerve regeneration and motor function recovery, but their biological characteristics (mainly including immunomodulatory effects, pro-vascular regenerative effects, and pro-myelin regenerative effects) and underlying molecular mechanisms in the process of repairing PNI in vivo are different, providing new insights into MSC therapy for peripheral nerve injury and its clinical translation.


Sujet(s)
Transplantation de cellules souches mésenchymateuses , Cellules souches mésenchymateuses , Régénération nerveuse , Lésions des nerfs périphériques , Rat Sprague-Dawley , Ingénierie tissulaire , Animaux , Rats , Cellules souches mésenchymateuses/métabolisme , Cellules souches mésenchymateuses/cytologie , Ingénierie tissulaire/méthodes , Lésions des nerfs périphériques/thérapie , Lésions des nerfs périphériques/métabolisme , Transplantation de cellules souches mésenchymateuses/méthodes , Nerf ischiatique/traumatismes , Nerf ischiatique/métabolisme , Mâle , Tissu adipeux/cytologie , Tissu adipeux/métabolisme
7.
Transl Oncol ; 47: 102049, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38964031

RÉSUMÉ

BACKGROUND: Nuclear cap-binding protein 2 (NCBP2), as the component of the cap-binding complex, participates in a number of biological processes, including pre-mRNA splicing, transcript export, translation regulation and other gene expression steps. However, the role of NCBP2 on the tumor cells and immune microenvironment remains unclear. To systematically analyze and validate functions of NCBP2, we performed a pan-cancer analysis using multiple approaches. METHODS: The data in this study were derived from sequencing, mutation, and methylation data in the TCGA cohort, normal sample sequencing data in the GTEx project, and cell line expression profile data in the CCLE database. RESULTS: Survival analyses including the Cox proportional-hazards model and log-rank test revealed the poor prognostic role of NCBP2 in multiple tumors. We further validated the oncogenic ability of NCBP2 in prostate cancer cell lines, organoids and tumor-bearing mice. A negative correlation was observed between NCBP2 expression and immune score by the ESTIMATE algorithm. Simultaneously, the NCBP2-induced immunosuppressive microenvironment might be related to the decline in CD8+T cells and the increase in regulatory T cells and neutrophils, examined by flow cytometry experiments for NCBP2 overexpressed tumor-bearing mice. CONCLUSION: This research offered strong proof supporting NCBP2 as the prognostic marker and the therapeutic target in the future.

8.
JCO Precis Oncol ; 8: e2400111, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38976830

RÉSUMÉ

PURPOSE: Simultaneous profiling of cell-free DNA (cfDNA) methylation and fragmentation features to improve the performance of cfDNA-based cancer detection is technically challenging. We developed a method to comprehensively analyze multimodal cfDNA genomic features for more sensitive esophageal squamous cell carcinoma (ESCC) detection. MATERIALS AND METHODS: Enzymatic conversion-mediated whole-methylome sequencing was applied to plasma cfDNA samples extracted from 168 patients with ESCC and 251 noncancer controls. ESCC characteristic cfDNA methylation, fragmentation, and copy number signatures were analyzed both across the genome and at accessible cis-regulatory DNA elements. To distinguish ESCC from noncancer samples, a first-layer classifier was developed for each feature type, the prediction results of which were incorporated to construct the second-layer ensemble model. RESULTS: ESCC plasma genome displayed global hypomethylation, altered fragmentation size, and chromosomal copy number alteration. Methylation and fragmentation changes at cancer tissue-specific accessible cis-regulatory DNA elements were also observed in ESCC plasma. By integrating multimodal genomic features for ESCC detection, the ensemble model showed improved performance over individual modalities. In the training cohort with a specificity of 99.2%, the detection sensitivity was 81.0% for all stages and 70.0% for stage 0-II. Consistent performance was observed in the test cohort with a specificity of 98.4%, an all-stage sensitivity of 79.8%, and a stage 0-II sensitivity of 69.0%. The performance of the classifier was associated with the disease stage, irrespective of clinical covariates. CONCLUSION: This study comprehensively profiles the epigenomic landscape of ESCC plasma and provides a novel noninvasive and sensitive ESCC detection approach with genome-scale multimodal analysis.


Sujet(s)
Acides nucléiques acellulaires , Méthylation de l'ADN , Tumeurs de l'oesophage , Carcinome épidermoïde de l'oesophage , Humains , Tumeurs de l'oesophage/génétique , Tumeurs de l'oesophage/sang , Tumeurs de l'oesophage/diagnostic , Mâle , Femelle , Adulte d'âge moyen , Acides nucléiques acellulaires/sang , Acides nucléiques acellulaires/génétique , Carcinome épidermoïde de l'oesophage/génétique , Sujet âgé , Épigénome
9.
Huan Jing Ke Xue ; 45(7): 3858-3869, 2024 Jul 08.
Article de Chinois | MEDLINE | ID: mdl-39022934

RÉSUMÉ

Based on the PM2.5 monitoring data, NCEP data, and the meteorological data of the weather situation analysis at the corresponding time in Yangquan City from 2020 to 2022, using the HYSPLIT4 backward trajectory model, multi-station potential source contribution factor analysis (MS-PSCF) and trajectory density analysis (TDA) were introduced to study the differentiation and classification of PM2.5 transport channels and potential sources in Yangquan City. The results showed that: ① The PM2.5 pollution in Yangquan was mainly concentrated in Yangquan and Pingding, whereas the pollution in Yuxian was relatively light. The proportion of days with different pollution levels and the average and maximum values of PM2.5 concentration in Yangquan and Pingding were significantly higher than those in Yuxian, and the distribution characteristics of PM2.5 were closely related to the local special terrain. ② The amount of PM2.5 pollution and the concentration of PM2.5 in different pollution levels were the highest in light wind weather. The influence of east-west regional transport on PM2.5 pollution times and PM2.5 concentration of Yangquan and Pingding was obvious, and the contribution of east wind was significant. The influence of local pollution sources was the main factor in the moderate pollution weather in Yuxian County. ③ There were four main ground conditions for the generation and maintenance of moderate or above pollution weather: warm low pressure type (22%), high pressure front (bottom) type (54%), high pressure back type (14%), and pressure equalization field (10%). High pressure front (bottom) type was the main ground situation causing the increase in PM2.5 concentration. There were two types of upper air conditions, namely, flat westerly flow type (78%) and northwest flow type (22%). The upper westerly flow type was the main upper air condition that caused the increase in PM2.5 concentration. ④ The results of transport channels and potential source areas of PM2.5 with different pollution levels obtained by MS-PSCF and TDA were consistent. The main transport channels of PM2.5 were the northeast, southeast, and northwest channels, whereas the northeast and southeast channels were short-distance transport routes, which were the main routes causing the increase in PM2.5 concentration. The northwest channel was consistent with the northwest dust transport channel, belonging to long-distance transmission. The main potential source areas of PM2.5 pollution were located in the central and western parts of Hebei and the southeast part of Hebei, the northeast part of Henan and its junction with the southwest part of Shandong, and the southeast part of Shanxi.

10.
Brain ; 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39001866

RÉSUMÉ

Mitochondrial and synaptic dysfunction are pathological features of brain aging and cognitive decline. Synaptic mitochondria are vital for meeting the high energy demands of synaptic transmission. However, little is known about the link between age-related metabolic changes and the integrity of synaptic mitochondria. To this end, we investigate the mechanisms of advanced glycation endproducts (AGEs)-mediated mitochondrial and synaptic stress and evaluate the strategies to eliminate these toxic metabolites. Using aged brain and novel transgenic mice overexpressing neuronal glyoxalase 1 (GLO1), we comprehensively analyzed alterations in accumulation/buildup of AGEs and related metabolites in synaptic mitochondria and the association of AGE levels with mitochondrial function. We demonstrate for the first time that synaptic mitochondria are an early and major target of AGEs and the related toxic metabolite methylglyoxal (MG), a precursor of AGEs. MG/AGEs-insulted synaptic mitochondria exhibit deterioration of mitochondrial and synaptic function. Such accumulation of MG/AGEs positively correlated with mitochondrial perturbation and oxidative stress in aging brain. Importantly, clearance of AGEs-related metabolites by enhancing neuronal GLO1, a key enzyme for detoxification/of AGEs, reduces synaptic mitochondrial AGEs accumulation and improves mitochondrial and cognitive function in aging and AGE-challenged mice. Furthermore, we evaluated the direct effect of AGEs on synaptic function in hippocampal neurons in live brain slices as an ex-vivo model and in vitro cultured hippocampal neurons by recording long-term potentiation (LTP) and measuring spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs). Neuronal GLO1 rescues deficits in AGEs-induced synaptic plasticity and transmission by fully recovery of decline in LTP or frequency of mEPSC. These studies explore crosstalk between synaptic mitochondrial dysfunction and age-related metabolic changes relevant to brain aging and cognitive decline. Synaptic mitochondria are particularly susceptible to AGEs-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction in synaptic degeneration in age-related cognitive decline. Thus, augmenting GLO1 function to scavenge toxic metabolites represents a therapeutic approach to reduce age-related AGEs accumulation and to improve mitochondrial function and learning and memory.

11.
Materials (Basel) ; 17(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38998234

RÉSUMÉ

Three-dimensional braided composites (3D-BCs) have better specific strength and stiffness than two-dimensional planar composites (2D-PCs), so they are widely used in modern industrial fields. In this paper, two kinds of 3D four-directional braided composites (3D4d-BCs) with different braided angles (15°, denoted as H15, and 30°, denoted as H30) were subjected to hydrothermal aging treatments, low-velocity impact (LVI) tests, and compression after impact (CAI) tests under different conditions. This study systematically studied the hygroscopic behavior and the effect of hygrothermal aging on the mechanical properties of 3D4d-BC. The results show that higher temperatures and smaller weaving angles can significantly improve the moisture absorption equilibrium content. When the moisture absorption content is balanced, the energy absorption effect of 3D4d-BC is better, but the integrity and residual compression rate will be reduced. Due to the intervention of oxygen molecules, the interface properties between the matrix and the composite material will be reduced, so the compressive strength will be further reduced. In the LVI test, the peak impact load of H15 is low. In CAI tests, the failure of H15 mainly occurs on the side, and the failure form is buckling failure. The main failure direction of H30 is 45° shear failure.

12.
Cell Rep ; 43(7): 114434, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-38963763

RÉSUMÉ

Development of type 2 diabetes mellitus (T2DM) is associated with low-grade chronic type 2 inflammation and disturbance of glucose homeostasis. Group 2 innate lymphoid cells (ILC2s) play a critical role in maintaining adipose homeostasis via the production of type 2 cytokines. Here, we demonstrate that CB2, a G-protein-coupled receptor (GPCR) and member of the endocannabinoid system, is expressed on both visceral adipose tissue (VAT)-derived murine and human ILC2s. Moreover, we utilize a combination of ex vivo and in vivo approaches to explore the functional and therapeutic impacts of CB2 engagement on VAT ILC2s in a T2DM model. Our results show that CB2 stimulation of ILC2s protects against insulin-resistance onset, ameliorates glucose tolerance, and reverses established insulin resistance. Our mechanistic studies reveal that the therapeutic effects of CB2 are mediated through activation of the AKT, ERK1/2, and CREB pathways on ILC2s. The results reveal that the CB2 agonist can serve as a candidate for the prevention and treatment of T2DM.


Sujet(s)
Diabète de type 2 , Insulinorésistance , Lymphocytes , Récepteur cannabinoïde de type CB2 , Animaux , Diabète de type 2/immunologie , Diabète de type 2/métabolisme , Récepteur cannabinoïde de type CB2/métabolisme , Récepteur cannabinoïde de type CB2/agonistes , Lymphocytes/métabolisme , Lymphocytes/immunologie , Lymphocytes/effets des médicaments et des substances chimiques , Humains , Souris , Mâle , Souris de lignée C57BL , Immunité innée/effets des médicaments et des substances chimiques , Graisse intra-abdominale/métabolisme , Graisse intra-abdominale/immunologie , Graisse intra-abdominale/effets des médicaments et des substances chimiques , Tissu adipeux/métabolisme , Tissu adipeux/immunologie , Protéines proto-oncogènes c-akt/métabolisme
13.
Metabolomics ; 20(4): 86, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39066850

RÉSUMÉ

INTRODUCTION: Longitudinal metabolomics data from a meal challenge test contains both fasting and dynamic signals, that may be related to metabolic health and diseases. Recent work has explored the multiway structure of time-resolved metabolomics data by arranging it as a three-way array with modes: subjects, metabolites, and time. The analysis of such dynamic data (where the fasting data is subtracted from postprandial states) reveals dynamic markers of various phenotypes, and differences between fasting and dynamic states. However, there is still limited success in terms of extracting static and dynamic biomarkers for the same subject stratifications. OBJECTIVES: Through joint analysis of fasting and dynamic metabolomics data, our goal is to capture static and dynamic biomarkers of a phenotype for the same subject stratifications providing a complete picture, that will be more effective for precision health. METHODS: We jointly analyze fasting and dynamic metabolomics data collected during a meal challenge test from the COPSAC 2000 cohort using coupled matrix and tensor factorizations (CMTF), where the dynamic data (subjects by metabolites by time) is coupled with the fasting data (subjects by metabolites) in the subjects mode. RESULTS: The proposed data fusion approach extracts shared subject stratifications in terms of BMI (body mass index) from fasting and dynamic signals as well as the static and dynamic metabolic biomarker patterns corresponding to those stratifications. Specifically, we observe a subject stratification showing the positive association with all fasting VLDLs and higher BMI. For the same subject stratification, a subset of dynamic VLDLs (mainly the smaller sizes) correlates negatively with higher BMI. Higher correlations of the subject quantifications with the phenotype of interest are observed using such a data fusion approach compared to individual analyses of the fasting and postprandial state. CONCLUSION: The CMTF-based approach provides a complete picture of static and dynamic biomarkers for the same subject stratifications-when markers are present in both fasting and dynamic states.


Sujet(s)
Marqueurs biologiques , Jeûne , Métabolomique , Période post-prandiale , Humains , Marqueurs biologiques/sang , Marqueurs biologiques/métabolisme , Métabolomique/méthodes , Jeûne/métabolisme , Mâle , Femelle , Adulte , Adulte d'âge moyen
14.
Mol Neurobiol ; 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39052183

RÉSUMÉ

Epilepsy is characterized by a multifaceted aetiology. Ferroptosis has recently been implicated in seizure pathophysiology, although its mechanistic role in epilepsy remains obscure. We examined the roles of ferroptosis-related genes (FRGs) in epilepsy cohorts from the GSE143272 dataset. We investigated the associations between gene expression and the immune response by performing CIBERSORT and MCP-counter analyses. By employing unsupervised consensus clustering and weighted gene coexpression network analysis (WGCNA), we delineated robust gene clusters across cohorts. Single-cell RNA sequencing data from the GSE201048 dataset provided insights into the interactions between pivotal ferroptosis-related genes and immune cells. Additionally, we employed qRT‒PCR technology to measure the levels of these central genes in the tissues of epileptic patients and mice. Our findings revealed seven pivotal genes (TFRC, POR, PTGS2, RELA, PGD, TRIM21, and QSOX1) at the forefront in epilepsy specimens. A diagnostic model harnessing these genes exhibited substantial efficacy (AUC = 0.913). Similarly, the qRT‒PCR analysis of samples from epileptic patients and mouse epileptic brain tissues substantiated these findings. Stratification of 91 patients with epilepsy via WGCNA, based on gene expression, revealed distinct immunological profiles. The scRNA-seq data further indicated increased expression of central genes in macrophages and microglia. Notably, these cells and those with elevated ferroptosis scores were significantly enriched in inflammation-related pathways. These findings support the strong involvement of FRGs in the pathogenesis of epilepsy, particularly neuroinflammation. These central genes hold promise as novel diagnostic biomarkers for epilepsy.

15.
Spine Deform ; 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39039392

RÉSUMÉ

PURPOSE: The purpose of this study is to develop and apply an algorithm that automatically classifies spine radiographs of pediatric scoliosis patients. METHODS: Anterior-posterior (AP) and lateral spine radiographs were extracted from the institutional picture archive for patients with scoliosis. Overall, there were 7777 AP images and 5621 lateral images. Radiographs were manually classified into ten categories: two preoperative and three postoperative categories each for AP and lateral images. The images were split into training, validation, and testing sets (70:15:15 proportional split). A deep learning classifier using the EfficientNet B6 architecture was trained on the spine training set. Hyperparameters and model architecture were tuned against the performance of the models in the validation set. RESULTS: The trained classifiers had an overall accuracy on the test set of 1.00 on 1166 AP images and 1.00 on 843 lateral images. Precision ranged from 0.98 to 1.00 in the AP images, and from 0.91 to 1.00 on the lateral images. Lower performance was observed on classes with fewer than 100 images in the dataset. Final performance metrics were calculated on the assigned test set, including accuracy, precision, recall, and F1 score (the harmonic mean of precision and recall). CONCLUSIONS: A deep learning convolutional neural network classifier was trained to a high degree of accuracy to distinguish between 10 categories pre- and postoperative spine radiographs of patients with scoliosis. Observed performance was higher in more prevalent categories. These models represent an important step in developing an automatic system for data ingestion into large, labeled imaging registries.

17.
Int J Surg ; 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38905505

RÉSUMÉ

BACKGROUND: Video-assisted thoracoscopic (VATS) lobectomy can affect patients' pulmonary function and quality of life significantly. No optimal protocol combining patient-reported outcome-based symptom management and post-discharge rehabilitation programme has yet been established. This study aimed to assess the efficacy of a novel smartphone app designed for home-based symptom management and rehabilitation. METHODS: The app was developed based on three modules: a symptom reporting system with alerts, aerobic and respiratory training exercises, and educational material. Four core symptoms were selected based on a questionnaire survey of 201 patients and three rounds of Delphi voting by 30 experts. We screened 265 patients and randomly assigned 136 equally to the app group and usual care group. The primary outcome was pulmonary function recovery at 30 days postoperatively. Secondary outcomes included symptom burden and interference with daily living (both rated using the MD Anderson Symptom Inventory for Lung Cancer), aerobic exercise intensity, emergency department visits, app-related safety, and satisfaction with the app. FINDINGS: Of the 136 participants, 56.6% were women and their mean age was 61 years. The pulmonary function recovery ratio 1 month after surgery in the app group was significantly higher than that in the usual care group (79.32% vs. 75.73%; P=0.040). The app group also recorded significantly lower symptom burden and interference with daily living scores and higher aerobic exercise intensity after surgery than the usual care group. Thirty-two alerts were triggered in the app group. The highest pulmonary function recovery ratio and aerobic exercise intensity were recorded in those patients who triggered alerts in both groups. INTERPRETATION: Using a smartphone app is an effective approach to accelerate home-based rehabilitation after VATS lobectomy. The symptom alert mechanism of this app could optimise recovery outcomes, possibly driven by patients' increased self-awareness.

18.
Cancer Cell Int ; 24(1): 208, 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38872157

RÉSUMÉ

BACKGROUND: Lung adenocarcinoma (LUAD) patients have a dismal survival rate because of cancer metastasis and drug resistance. The study aims to identify the genes that concurrently modulate EMT, metastasis and EGFR-TKI resistance, and to investigate the underlying regulatory mechanisms. METHODS: Cox regression and Kaplan-Meier analyses were applied to identify prognostic oncogenes in LUAD. Gene set enrichment analysis (GSEA) was used to indicate the biological functions of the gene. Wound-healing and Transwell assays were used to detect migratory and invasive ability. EGFR-TKI sensitivity was evaluated by assessing the proliferation, clonogenic survival and metastatic capability of cancer cells with treatment with gefitinib. Methylated RNA immunoprecipitation (MeRIP) and RNA immunoprecipitation (RIP) analyses established the level of m6A modification present on the target gene and the protein's capability to interact with RNA, respectively. Single-sample gene set enrichment (ssGSEA) algorithm used to investigate levels of immune cell infiltration. RESULTS: Our study identified dual-specificity phosphatase 5 (DUSP5) as a novel and powerful predictor of adverse outcomes for LUAD by using public datasets. Functional enrichment analysis found that DUSP5 was positively enriched in EMT and transforming growth factor-beta (TGF-ß) signaling pathway, a prevailing pathway involved in the induction of EMT. As expected, DUSP5 knockdown suppressed EMT via inhibiting the canonical TGF-ß/Smad signaling pathway in in vitro experiments. Consistently, knockdown of DUSP5 was first found to inhibit migratory ability and invasiveness of LUAD cells in in vitro and prevent lung metastasis in in vivo. DUSP5 knockdown re-sensitized gefitinib-resistant LUAD cells to gefitinib, accompanying reversion of EMT progress. In LUAD tissue samples, we found 14 cytosine-phosphate-guanine (CpG) sites of DUSP5 that were negatively associated with DUSP5 gene expression. Importantly, 5'Azacytidine (AZA), an FDA-approved DNA methyltransferase inhibitor, restored DUSP5 expression. Moreover, RIP experiments confirmed that YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a m6A reader protein, could bind DUSP5 mRNA. YTHDF1 promoted DUSP5 expression and the malignant phenotype of LUAD cells. In addition, the DUSP5-derived genomic model revealed the two clusters with distinguishable immune features and tumor mutational burden (TMB). CONCLUSIONS: Briefly, our study discovered DUSP5 which was regulated by epigenetic modification, might be a potential therapeutic target, especially in LUAD patients with acquired EGFR-TKI resistance.

19.
NPJ Precis Oncol ; 8(1): 99, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38831114

RÉSUMÉ

Fetal adenocarcinoma of the lung (FLAC) is a rare form of lung adenocarcinoma and was divided into high-grade (H-FLAC) and low-grade (L-FLAC) subtypes. Despite the existence of some small case series studies, a comprehensive multi-omics study of FLAC has yet to be undertaken. In this study, we depicted the multi-omics landscapes of this rare lung cancer type by performing multi-regional sampling on 20 FLAC cases. A comparison of multi-omics profiles revealed significant differences between H-FLAC and L-FLAC in a multi-omic landscape. Two subtypes also showed distinct relationships between multi-layer intratumor heterogeneity (ITH). We discovered that a lower genetic ITH was significantly associated with worse recurrence-free survival and overall survival in FLAC patients, whereas higher methylation ITH in H-FLAC patients suggested a short survival. Our findings highlight the complex interplay between genetic and transcriptional heterogeneity in FLAC and suggest that different types of ITH may have distinct implications for patient prognosis.

20.
J Inflamm Res ; 17: 3785-3799, 2024.
Article de Anglais | MEDLINE | ID: mdl-38895139

RÉSUMÉ

Background: Globally, the subsequent complications that accompany sepsis result in remarkable morbidity and mortality rates. The lung is among the vulnerable organs that incur the sepsis-linked inflammatory storm and frequently culminates into ARDS/ALI. The metformin-prescribed anti-diabetic drug has been revealed with anti-inflammatory effects in sepsis, but the underlying mechanisms remain unclear. This study aimed to ascertain metformin's effects and functions in a young mouse model of sepsis-induced ALI. Methods: Mice were randomly divided into 4 groups: sham, sham+ Met, CLP, and CLP+ Met. CLP was established as the sepsis-induced ALI model accompanied by intraperitoneal metformin treatment. At day 7, the survival state of mice was noted, including survival rate, weight, and M-CASS. Lung histological pathology and injury scores were determined by hematoxylin-eosin staining. The pulmonary coefficient was used to evaluate pulmonary edema. Furthermore, IL-1ß, CCL3, CXCL11, S100A8, S100A9 and NLRP3 expression in tissues collected from lungs were determined by qPCR, IL-1ß, IL-18, TNF-α by ELISA, caspase-1, ASC, NLRP3, P65, p-P65, GSDMD-F, GSDMD-N, IL-1ß and S100A8/A9 by Western blot. Results: The data affirmed that metformin enhanced the survival rate, lessened lung tissue injury, and diminished the expression of inflammatory factors in young mice with sepsis induced by CLP. In contrast to sham mice, the CLP mice were affirmed to manifest ALI-linked pathologies following CLP-induced sepsis. The expressions of pro-inflammatory factors, for instance, IL-1ß, IL-18, TNF-α, CXCL11, S100A8, and S100A9 are markedly enhanced by CLP, while metformin abolished this adverse effect. Western blot analyses indicated that metformin inhibited the sepsis-induced activation of GSDMD and the upregulation of S100A8/A9, NLRP3, and ASC. Conclusion: Metformin could improve the survival rate, lessen lung tissue injury, and minimize the expression of inflammatory factors in young mice with sepsis induced by CLP. Metformin reduced sepsis-induced ALI via inhibiting the NF-κB signaling pathway and inhibiting pyroptosis by the S100A8/A9-NLRP3-IL-1ß pathway.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE