Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 185
Filtrer
1.
Heliyon ; 10(15): e35101, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39170535

RÉSUMÉ

Micro-nano-plastic (MNP) particles (p) in the environment can enter the human body and pose a potential threat to human health. However, it is unknown whether these substances are present in polypropylene (PP) plastic-bottled injections, which are used as high-frequency intravenous infusions to treat diseases. Therefore, the objective of this study was to identify and quantify insoluble MNP particles in 16 batches of injectable formulations within the validity period. Primarily, ethylene-propylene copolymer or P(E-P) micro-plastic (MP) particles (2-10 µm, 216 p/mL) were identified by micro-Raman spectroscopy, and nano-particles (<50 nm, 2.1 × 104 p/mL) similar to PP containing only carbon were detected by scanning electron microscopy-energy-dispersive X-ray spectroscopy (photoelectron). Furthermore, P(E-P) MP particles (1 × 103 to 1 × 105 ng/L) from the injections were enriched on the GF-B filter, and PP or P(E-P) nano-plastic (NP) particles (1 × 103 to 4 × 104 ng/L) enriched on the alumina film were detected by pyrolysis-gas chromatography/mass spectrometry. Finally, the total insoluble particles in injections were 6 × 104 to 1 × 107 p/mL (0.02-100 µm). Our findings are the first to identify and quantify MNPs in PP-bottled injections. Considering that they can enter the blood circulation, so whether cause disease remains to be investigated.

2.
Nano Lett ; 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39146031

RÉSUMÉ

Rechargeable magnesium batteries (rMBs) are promising candidates for next-generation batteries in which sulfides are widely used as cathode materials. The slow kinetics, low redox reversibility, and poor magnesium storage stability induced by the large Coulombic resistance and ionic polarization of Mg2+ ions have obstructed the development of high-performance rMBs. Herein, a Cu1.8S1-xSex cathode material with a two-dimensional sheet structure has been prepared by an anion-tuning strategy, achieving improved magnesium storage capacity and cycling stability. Element-specific synchrotron radiation analysis is evidence that selenium incorporation has indeed changed the chemical state of Cu species. Density functional theory calculations combined with kinetics analysis reveal that the anionic substitution endows the Cu1.8S1-xSex electrode with favorable charge-transfer kinetics and low ion diffusion barrier. The principal magnesium storage mechanisms and structural evolution process have been revealed in details based on a series of ex situ investigations. Our findings provide an effective heteroatom-tuning tactic of optimizing electrode structure toward advanced energy storage devices.

3.
Article de Anglais | MEDLINE | ID: mdl-39146398

RÉSUMÉ

Bismuth-based compounds based on conversion-alloying reactions of multielectron transfer have attracted extensive attention as alternative anode candidates for rechargeable magnesium batteries (rMBs). However, the inadequate magnesium storage capability induced by the sluggish kinetics, poor reversibility, and terrible structural stability impedes their practical utilization. Herein, monodispersed Bi2S3 anchored on MXene has been prepared via a simple self-assembly strategy to induce the interfacial bonding of Ti-S and Ti-O-Bi. Unique superiority, including good electrical conductivity, high mechanical strength, and rapid charge transfer, is cleverly integrated together in the Bi2S3/MXene heterostructures, which endowed heterostructures with enhanced magnesium storage performance. Density functional theory calculations combined with kinetic behavior analyses confirm the favorable charge transfer and low ion diffusion barrier in hybrids. Furthermore, a stepwise insertion-conversion-alloying reaction mechanism is revealed in depth by ex situ investigations, which may also account for promoting performance. This work provides significant inspirations for constructing ingenious multicompositional hybrids by strong interfacial coupling engineering toward high-performance energy storage devices.

4.
Nano Lett ; 24(28): 8542-8549, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38973706

RÉSUMÉ

Aqueous aluminum-ion batteries (AAIBs) are considered a strong candidate for the new generation of energy storage devices. The lack of suitable cathode materials has been a bottleneck factor hindering the future development of AAIBs. In this work, we design and construct a highly effective cathode with dual morphologies. Two-dimensional (2D) layered MXene materials possessed good conductivity and hydrophilicity, which are used as the substrates to deposit rod-shaped vanadium oxides (V2O5) to form a three-dimensional (3D) cathode. The cathode design provides a strong boost for the rapid electrochemical activities of rod-shaped V2O5 by embedding/extracting both protons (H+) and aluminum-ion (Al3+). As a result, the V2O5@MXene cathode based AAIB delivers an ultrahigh initial specific capacity of 626 mAh/g at 0.1 A/g with a stable cycle performance up to 100 cycles. This work is a breakthrough for the development of cathode materials for AAIBs.

5.
Small ; 20(34): e2401314, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38644698

RÉSUMÉ

Bismuth-based materials have been recognized as the appealing anodes for potassium-ion batteries (PIBs) due to their high theoretical capacity. However, the kinetics sluggishness and capacity decline induced by the structure distortion predominately retard their further development. Here, a heterostructure of polyaniline intercalated Bi2O2CO3/MXene (BOC-PA/MXene) hybrids is reported via simple self-assembly strategy. The ingenious design of heterointerface-rich architecture motivates significantly the interior self-built-in electric field (IEF) and high-density electron flow, thus accelerating the charge transfer and boosting ion diffusion. As a result, the hybrids realize a high reversible specific capacity, satisfying rate capability as well as long-term cycling stability. The in/ex situ characterizations further elucidate the stepwise intercalation-conversion-alloying reaction mechanism of BOC-PA/MXene. More encouragingly, the full cell investigation further highlights its competitive merits for practical application in further PIBs. The present work not only opens the way to the design of other electrodes with an appropriate working mechanism but also offers inspiration for built-in electric-field engineering toward high-performance energy storage devices.

6.
Small ; : e2400335, 2024 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-38682593

RÉSUMÉ

Aluminum batteries (ABs) are identified as one of the most promising candidates for the next generation of large-scale energy storage elements because of their efficient three-electron reaction. Compared to ionic electrolytes, aqueous aluminum-ion batteries (AAIBs) are considered safer, less costly, and more environmentally friendly. However, considerable cycling performance is a key issue limiting the development of AAIBs. Stable, efficient, and electrolyte-friendly cathodes are most desirable for AAIBs. Herein, a rod-shaped defect-rich α-MnO2 is designed as a cathode, which is capable to deliver high performance with stable cycling for 180 cycles at 500 mA g-1 and maintains a discharge specific capacity of ≈100 mAh g-1. In addition, the infiltrability simulation is effectively utilized to corroborate the rapid electrochemical reaction brought about by the defective mechanism. With the formation of oxygen vacancies, the dual embedding of protons and metal ions is activated. This work provides a brand-new design for the development and characterization of cathodes for AAIBs.

7.
Small Methods ; : e2400127, 2024 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-38623969

RÉSUMÉ

Stabilizing the Zn anode/electrolyte interface is critical for advancing aqueous zinc ion storage technologies. Addressing this challenge helps minimize parasitic reactions and controls the formation of Zn dendrites, which is fundamental to achieving highly reversible Zn electrochemistry. In this study, 2% by volume of dimethyl sulfoxide (DMSO) is introduced into the baseline zinc sulfate (ZS) electrolyte, which acts as an efficient regulator to form a robust solid-electrolyte interphase (SEI) on the Zn anode. This innovative approach enables uniform Zn deposition and does not substantially modify the Zn2+ solvation structure. The Zn||Zn symmetric cell exhibits an extended cycle life of nearly one calendar year (>8500 h) at a current density of 0.5 mA cm-2 and an areal capacity of 0.5 mAh cm-2. Impressive full cell performance can be achieved. Specifically, the Zn||VS2 full cell achieves an areal capacity of 1.7 mAh cm-2, with a superior negative-to-positive capacity ratio of 2.5, and an electrolyte-to-capacity ratio of 101.4 µL mAh-1, displaying remarkable stability over 1000 cycles under a high mass loading of 11.0 mg cm-2 without significant degradation. This innovative approach in electrolyte engineering provides a new perspective on in situ SEI design and furthers the understanding of Zn anode stabilization.

8.
Nano Lett ; 24(13): 3882-3889, 2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38527217

RÉSUMÉ

We develop analytical models of optical-field-driven electron tunneling from the edge and surface of free-standing two-dimensional (2D) materials. We discover a universal scaling between the tunneling current density (J) and the electric field near the barrier (F): In(J/|F|ß) ∝ 1/|F| with ß values of 3/2 and 1 for edge emission and vertical surface emission, respectively. At ultrahigh values of F, the current density exhibits an unexpected high-field saturation effect due to the reduced dimensionality of the 2D material, which is absent in the traditional bulk material. Our calculation reveals the dc bias as an efficient method for modulating the optical-field tunneling subcycle emission characteristics. Importantly, our model is in excellent agreement with a recent experiment on graphene. Our results offer a useful framework for understanding optical-field tunneling emission from 2D materials, which are helpful for the development of optoelectronics and emerging petahertz vacuum nanoelectronics.

9.
Exp Ther Med ; 27(4): 147, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38476889

RÉSUMÉ

The mitochondrial calcium uniporter (MCU) is a major protein for the uptake of mitochondrial calcium to regulate intracellular energy metabolism, including processes such as mitophagy. The present study investigated the effect of the MCU on mitophagy in pancreatic ductal epithelial cells (PDECs) in acute pancreatitis (AP) in vitro. The normal human PDECs (HPDE6-C7) were treated with caerulein (CAE) to induce AP-like changes, with or without ruthenium red to inhibit the MCU. The mitochondrial membrane potentials (MMPs) and mitochondrial Ca2+ levels were analyzed by fluorescence. The expression levels of MCU, LC3, p62, and translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), putative kinase 1 (PINK1), and Parkin were measured by western blotting and immunofluorescence. Mitophagy was observed by confocal fluorescence microscopy and transmission electron microscopy. The results showed that CAE increased the MCU protein expression, mitochondrial Ca2+ levels, MMP depolarization and the protein expression of mitophagy markers including the LC3II/I ratio, PINK1, and Parkin. CAE decreased the protein expression of p62 and TOMM20, and promoted the formation of mitophagosomes in HPDE6-C7 cells. Notably, changes in these markers were reversed by inhibiting the MCU. In conclusion, an activated MCU may promote mitophagy by regulating the PINK1/Parkin pathway in PDECs in AP.

10.
Small ; 20(30): e2312216, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38412417

RÉSUMÉ

Electrolysis of water has emerged as a prominent area of research in recent years. As a promising catalyst support, copper foam is widely investigated for electrolytic water, yet the insufficient mechanical strength and corrosion resistance render it less suitable for harsh working conditions. To exploit high-performance catalyst supports, various metal supports are comprehensively evaluated, and Ti6Al4V (Ti64) support exhibited outstanding compression and corrosion resistance. With this in mind, a 3D porous Ti64 catalyst support is fabricated using the selective laser sintering (SLM) 3D printing technology, and a conductive layer of nickel (Ni) is coated to increase the electrical conductivity and facilitate the deposition of catalysts. Subsequently, Co0.8Ni0.2(CO3)0.5(OH)·0.11H2O (CoNiCH) nanoneedles are deposited. The resulting porous Ti64/Ni/CoNiCH electrode displayed an impressive performance in the oxygen evolution reaction (OER) and reached 30 mA cm-2 at an overpotential of only 200 mV. Remarkably, even after being compressed at 15.04 MPa, no obvious structural deformation is observed, and the attenuation of its catalytic efficiency is negligible. Based on the computational analysis, the CoNiCH catalyst demonstrated superior catalytic activity at the Ni site in comparison to the Co site. Furthermore, the electrode reached 30 mA cm-2 at 1.75 V in full water splitting conditions and showed no significant performance degradation even after 60 h of continuous operation. This study presents an innovative approach to robust and corrosion-resistant catalyst design.

11.
Small ; 20(27): e2310012, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38368250

RÉSUMÉ

Developing efficient nonprecious bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte with a low overpotential and large current density presents an appealing yet challenging goal for large-scale water electrolysis. Herein, a unique 3D self-branched hierarchical nanostructure composed of ultra-small cobalt phosphide (CoP) nanoparticles embedded into N, P-codoped carbon nanotubes knitted hollow nanowall arrays (CoPʘNPCNTs HNWAs) on carbon textiles (CTs) through a carbonization-phosphatization process is presented. Benefiting from the uniform protrusion distributions of CoP nanoparticles, the optimum CoPʘNPCNTs HNWAs composites with high abundant porosity exhibit superior electrocatalytic activity and excellent stability for OER in alkaline conditions, as well as for HER in both acidic and alkaline electrolytes, even under large current densities. Furthermore, the assembled CoPʘNPCNTs/CTs||CoPʘNPCNTs/CTs electrolyzer demonstrates exceptional performance, requiring an ultralow cell voltage of 1.50 V to deliver the current density of 10 mA cm-2 for overall water splitting (OWS) with favorable stability, even achieving a large current density of 200 mA cm-2 at a low cell voltage of 1.78 V. Density functional theory (DFT) calculation further reveals that all the C atoms between N and P atoms in CoPʘNPCNTs/CTs act as the most efficient active sites, significantly enhancing the electrocatalytic properties. This strategy, utilizing 2D MOF arrays as a structural and compositional material to create multifunctional composites/hybrids, opens new avenues for the exploration of highly efficient and robust non-noble-metal catalysts for energy-conversion reactions.

12.
ACS Appl Mater Interfaces ; 16(8): 10061-10069, 2024 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-38372285

RÉSUMÉ

A dual-salt electrolyte with 5 M Al(OTF)3 and 0.5 M LiOTF is proposed for aqueous aluminum batteries, which can effectively prevent the corrosion caused by the hydrogen evolution reaction. With the addition of LiOTF in the electrolyte, the solvation phenomenon has changed with the coordination mode of Al3+ conversion from an all octahedral structure to a mixed octahedral and tetrahedral structure. This change can reduce the hydrogen bond between water molecules, which will minimize the occurrence of hydrogen evolution reactions. Moreover, the new electrolyte improves the cycle life of the battery. With MnO as the cathode, 2.1 V high charging platform and 1.5 V high discharge platform can be obtained. The electrochemical stability window (ESW) has been improved to 3.8 V. The first cycle capacity is up to 437 mAh g-1, which can be maintained at 103 mAh g-1 after 100 cycles. This work provides solutions for the future development of electrolyte for aqueous aluminum batteries.

13.
Eur J Oncol Nurs ; 68: 102486, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38219473

RÉSUMÉ

PURPOSE: To examine the unmet care needs (i.e., overall needs and need subdomains [physical and daily living needs, psychological and emotional needs, care and support needs, and health-system and informational needs]) of patients with cancer undergoing immunotherapy alone or in combination with other anticancer therapies, as well as related influencing factors. METHODS: A cross-sectional design was adopted. Cancer patients who received immunotherapy completed consent and questionnaires. Unmet care needs were evaluated with the Chinese version of the Supportive Care Needs Survey Screening Tool, symptom severity with the Symptom Severity Scale, distress severity with the Distress Thermometer Scale, and financial toxicity using the Financial Toxicity - Functional Assessment of Chronic Illness Therapy Questionnaire. RESULTS: In total, 105 patients were surveyed. The most frequently reported unmet needs were psychological and emotional needs (56.2%) followed by health-system and informational needs (36.2%). The major factors associated with unmet care needs and their subdomains were years of education, symptoms, distress, and financial toxicity. Years of education predicted overall unmet care needs, psychological and emotional needs, and care and support needs; symptoms predicted overall unmet care needs and all four subdomains; distress predicted psychological and emotional needs and health-system and informational needs; and financial toxicity predicted overall needs and psychological and emotional needs. CONCLUSIONS: Patients with higher education, severe symptoms, distress, and financial toxicity reported more unmet care needs. The findings of this study could be incorporated into immunotherapy-related clinical practice guidelines and future interventions to improve the quality of cancer care.


Sujet(s)
Stress financier , Tumeurs , Humains , Études transversales , Stress psychologique/psychologie , Tumeurs/thérapie , Tumeurs/psychologie , Enquêtes et questionnaires , Besoins et demandes de services de santé , Soutien social
14.
Small ; 20(3): e2304901, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37695085

RÉSUMÉ

Aqueous rechargeable Zn metal batteries (ARZBs) are extensively studied recently because of their low-cost, high-safety, long lifespan, and other unique merits. However, the terrible ion conductivity and insufficient interfacial redox dynamics at low temperatures restrict their extended applications under harsh environments such as polar inspections, deep sea exploration, and daily use in cold regions. Electrolyte modulation is considered to be an effective way to achieve low-temperature operation for ARZBs. In this review, first, the fundamentals of the liquid-solid transition of water at low temperatures are revealed, and an in-depth understanding of the critical factors for inferior performance at low temperatures is given. Furthermore, the electrolyte modulation strategies are categorized into anion/concentration regulation, organic co-solvent/additive introduction, anti-freezing hydrogels construction, and eutectic mixture design strategies, and emphasize the recent progress of these strategies in low-temperature Zn batteries. Finally, promising design principles for better electrolytes are recommended and future research directions about high-performance ARZBs at low temperatures are provided.

15.
Adv Mater ; 36(2): e2305957, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37838943

RÉSUMÉ

Transition-metal sulfides have been regarded as perspective anode candidates for high-energy Na-ion batteries. Their application, however, is precluded severely by either low charge storage or huge volumetric change along with sluggish reaction kinetics. Herein, an effective synergetic Sn incorporation-Zn substitution strategy is proposed based on copper-based sulfides. First, Na-ion storage capability of copper sulfide is significantly improved via incorporating an alloy-based Sn element. However, this process is accompanied by sacrifice of structural stability due to the high Na-ion uptake. Subsequently, to maintain the high Na-ion storage capacity, and concurrently improve cycling and rate capabilities, a Zn substitution strategy (taking partial Sn sites) is carried out, which could significantly promote Na-ion diffusion/reaction kinetics and relieve mechanical strain-stress within the crystal framework. The synergetic Sn incorporation and Zn substitution endow copper-based sulfides with high specific capacity (≈560 mAh g-1 at 0.5 A g-1 ), ultrastable cyclability (80 k cycles with ≈100% capacity retention), superior rate capability up to 200 A g-1 , and ultrafast charging feature (≈4 s per charging with ≈190 mAh g-1 input). This work provides in-depth insights for developing superior anode materials via synergetic multi-cation incorporation/substitution, aiming at solving their intrinsic issues of either low specific capacity or poor cyclability.

16.
Nanoscale Adv ; 5(23): 6318-6348, 2023 Nov 21.
Article de Anglais | MEDLINE | ID: mdl-38045530

RÉSUMÉ

Water plays a vital role in all aspects of life. Recently, water pollution has increased exponentially due to various organic and inorganic pollutants. Organic pollutants are hard to degrade; therefore, cost-effective and sustainable approaches are needed to degrade these pollutants. Organic dyes are the major source of organic pollutants from coloring industries. The photoactive metal-organic frameworks (MOFs) offer an ultimate strategy for constructing photocatalysts to degrade pollutants present in wastewater. Therefore, tuning the metal ions/clusters and organic ligands for the better photocatalytic activity of MOFs is a tremendous approach for wastewater treatment. This review comprehensively reports various MOFs and their composites, especially POM-based MOF composites, for the enhanced photocatalytic degradation of organic pollutants in the aqueous phase. A brief discussion on various theoretical aspects such as density functional theory (DFT) and machine learning (ML) related to MOF and MOF composite-based photocatalysts has been presented. Thus, this article may eventually pave the way for applying different structural features to modulate novel porous materials for enhanced photodegradation properties toward organic pollutants.

17.
ACS Appl Mater Interfaces ; 15(50): 58356-58366, 2023 Dec 20.
Article de Anglais | MEDLINE | ID: mdl-38054241

RÉSUMÉ

Sodium-ion batteries (SIBs) suffer from limited ion diffusion and structural expansion, generating the urgent demand for Na+ accommodable materials with promising architectures. In this work, the rational exploration for Co4S3 nanoparticles confined in an MnS nanorod-grafted N, S-codoped carbon polyhedron (Co-Mn-S@N-S-C) is achieved by the in situ growth of MOF on MnO2 nanorod along with the subsequent carbonization and sulfurization. Benefiting from the distinctive nanostructure, the Co-Mn-S@N-S-C anode delivers excellent structural stability, resulting in prolonged cycling stability with a capacity retention of 90.2% after 1000 cycles at 2 A g-1. Moreover, the reaction storage mechanism is clarified by the in situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. The results indicate that properly designed electrode materials have huge potential applications for highly efficient energy storage devices.

18.
ACS Nano ; 17(24): 25519-25531, 2023 Dec 26.
Article de Anglais | MEDLINE | ID: mdl-38061890

RÉSUMÉ

Li metal exhibits high potential as an anode material for next-generation high-energy density batteries. However, the nonuniform transport of Li+ ions causes Li-dendrite growth at the metal electrode, leading to severe capacity decay and a short cycling life. In this study, negatively charged lithiophilic sites (such as cationic metal vacancies) were used as hosts to regulate the atomic-scale Li+-ion deposition in Li-metal batteries (LMBs). As a proof of concept, three-dimensional (3D) carbon nanofibers (CNFs) decorated with negatively charged TiNbO4 grains (labeled CNF/nc-TNO) were confirmed to be promising Li hosts. Cationic vacancies caused by the carbothermal reduction of Nb5+ and Ti4+ ions generated a negatively charged fiber surface and strong electrostatic interactions that guided the Li+-ion flux to the shadowed areas underneath the fiber and throughout the fibrous mat. Consequently, circumferential Li-metal plating was observed in the CNF/nc-TNO host, even at a high current density of 10 mA cm-2. Moreover, CNF/nc-TNO asymmetric cells delivered a significantly more robust and stable Coulombic efficiency (CE) (99.2% over 380 cycles) than cells comprising electrically neutral CNFs without cationic defects (which exhibits rapid failure after 20 cycles) or Cu foil (which exhibits rapid CE decay, with a CE of 87.1% after 100 cycles). Additionally, CNF/nc-TNO exhibited high stability and low-voltage hysteresis during repeated Li plating/stripping (for over 4000 h at 2 mA cm-2) with an areal capacity of 2 mAh cm-2. It was further paired with high-voltage LiNi0.8Co0.1Mn0.1 (NCM811) cathodes, and the full cells showed long-term cycling (220 cycles) with a CE of 99.2% and a steady rate capability.

19.
Nano Lett ; 23(24): 11842-11849, 2023 Dec 27.
Article de Anglais | MEDLINE | ID: mdl-38071640

RÉSUMÉ

Aluminum-ion batteries have garnered an extensive amount of attention due to their superior electrochemical performance, low cost, and high safety. To address the limitation of battery performance, exploring new cathode materials and understanding the reaction mechanism for these batteries are of great significance. Among numerous candidates, multiple structures and valence states make manganese-based oxides the best choice for aqueous aluminum-ion batteries (AAIBs). In this work, a new cathode consists of γ-MnO2 with abundant oxygen vacancies. As a result, the electrode shows a high discharge capacity of 481.9 mAh g-1 at 0.2 A g-1 and a sustained reversible capacity of 128.6 mAh g-1 after 200 cycles at 0.4 A g-1. In particular, through density functional theory calculation and experimental comparison, the role of oxygen vacancies in accelerating the reaction kinetics of H+ has been verified. This study provides insights into the application of manganese dioxide materials in aqueous AAIBs.

20.
Nano Lett ; 23(20): 9491-9499, 2023 Oct 25.
Article de Anglais | MEDLINE | ID: mdl-37843076

RÉSUMÉ

An electrolyte additive, with convenient operation and remarkable functions, has been regarded as an effective strategy for prolonging the cycle life of aqueous zinc ion batteries. However, it is still difficult to dynamically regulate the unstable Zn interface during long-term cycling. Herein, tricine was introduced as an efficient regulator to achieve a pH-stable and byproduct-free interface. The functional zwitterion of tricine not only inhibits interfacial pH perturbation and parasitic reactions by the trapping effect of an anionic group (-COO-) but also simultaneously creates a uniform electric field by the electrostatic shielding effect of a cationic group (-NH2+). Such synergy accordingly eliminates dendrite formation and creates a chemical equilibrium in the electrolyte, endowing the Zn||Zn cell with long-term Zn plating/stripping for 2060 h at 5 mA cm-2 and 720 h at 10 mA cm-2. As a result, the Zn||VS2 full cell under a high cathodic loading mass (8.6 mg cm-2) exhibits exceptional capacity retention of 93% after 1000 cycles.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE