Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 141
Filtrer
1.
Cancer Lett ; 598: 217130, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39089666

RÉSUMÉ

PURPOSE: Cholesterol metabolism reprograming has been acknowledged as a novel feature of cancers. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with a high demand of cholesterol for rapid growth. The underlying mechanism of how cholesterol metabolism homestasis are disturbed in PDAC is explored. EXPERIMENTAL DESIGN: The relevance between PDAC and cholesterol was confirmed in TCGA database. The expression and clinical association were discovered in TCGA and GEO datasets. Knockdown and overexpression of AGFG1 was adopted to perform function studies. RNA sequencing, cholesterol detection, transmission electron microscope, co-immunoprecipitation, and immunofluorescence et al. were utilized to reveal the underlying mechanism. RESULTS: AGFG1 was identified as one gene positively correlated with cholesterol metabolism in PDAC as revealed by bioinformatics analysis. AGFG1 expression was then found associated with poor prognosis in PDAC. AGFG1 knockdown led to decreased proliferation of tumor cells both in vitro and in vivo. By RNA sequencing, we found AGFG1 upregulated expression leads to enhanced intracellular cholesterol biosynthesis. AGFG1 knockdown suppressed cholesterol biosynthesis and an accumulation of cholesterol in the ER. Mechanistically, we confirmed that AGFG1 interacted with CAV1 to relocate cholesterol for the proceeding of cholesterol biosynthesis, therefore causing disorders in intracellular cholesterol metabolism. CONCLUSIONS: Our study demonstrates the tumor-promoting role of AGFG1 by disturbing cholesterol metabolism homestasis in PDAC. Our study has present a new perspective on cancer therapeutic approach based on cholerstrol metabolism in PDAC.

2.
Cancer Cell Int ; 24(1): 262, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39048994

RÉSUMÉ

BACKGROUND: This study investigated the molecular mechanism of long intergenic non-protein coding RNA 1605 (LINC01605) in the process of tumor growth and liver metastasis of pancreatic ductal adenocarcinoma (PDAC). METHODS: LINC01605 was filtered out with specificity through TCGA datasets (related to DFS) and our RNA-sequencing data of PDAC tissue samples from Renji Hospital. The expression level and clinical relevance of LINC01605 were then verified in clinical cohorts and samples by immunohistochemical staining assay and survival analysis. Loss- and gain-of-function experiments were performed to estimate the regulatory effects of LINC01605 in vitro. RNA-seq of LINC01605-knockdown PDAC cells and subsequent inhibitor-based cellular function, western blotting, immunofluorescence and rescue experiments were conducted to explore the mechanisms by which LINC01605 regulates the behaviors of PDAC tumor cells. Subcutaneous xenograft models and intrasplenic liver metastasis models were employed to study its role in PDAC tumor growth and liver metastasis in vivo. RESULTS: LINC01605 expression is upregulated in both PDAC primary tumor and liver metastasis tissues and correlates with poor clinical prognosis. Loss and gain of function experiments in cells demonstrated that LINC01605 promotes the proliferation and migration of PDAC cells in vitro. In subsequent verification experiments, we found that LINC01605 contributes to PDAC progression through cholesterol metabolism regulation in a LIN28B-interacting manner by activating the mTOR signaling pathway. Furthermore, the animal models showed that LINC01605 facilitates the proliferation and metastatic invasion of PDAC cells in vivo. CONCLUSIONS: Our results indicate that the upregulated lncRNA LINC01605 promotes PDAC tumor cell proliferation and migration by regulating cholesterol metabolism via activation of the mTOR signaling pathway in a LIN28B-interacting manner. These findings provide new insight into the role of LINC01605 in PDAC tumor growth and liver metastasis as well as its value for clinical approaches as a metabolic therapeutic target in PDAC.

3.
Zhongguo Zhen Jiu ; 44(7): 807-20, 2024 Jul 12.
Article de Chinois | MEDLINE | ID: mdl-38986595

RÉSUMÉ

OBJECTIVE: To explore the potential mechanism of electroacupuncture (EA) for vascular dementia (VD) using tandem mass tag (TMT) quantitative proteomics technology. METHODS: Among 80 male SPF SD rats, 78 rats which met the selection criteria through the Morris water maze test were selected and randomly divided into a sham surgery group (18 rats) and a surgery group (60 rats). VD model was established by four-vessel occlusion (4-VO) method in the surgery group, and 36 rats with successful modeling were randomly assigned to a model group (18 rats) and an EA group (18 rats). Each group was further divided into three subgroups based on intervention duration, with each subgroup containing 6 rats. Seven days after model establishment, the EA group received EA intervention at left and right "Sishencong" (EX-HN 1) and bilateral "Fengchi" (GB 20), with continuous wave at a frequency of 2 Hz and current intensity of 1 mA, daily for 30 min, with subgroups receiving EA for 7, 14, or 21 d respectively. Cognitive function before and after interventions was assessed using Morris water maze. Proteomic analysis was conducted on the optimal EA subgroup and corresponding sham surgery and model subgroups, identifying differentially expressed proteins and analyzing them through bioinformatics. Differentially expressed target proteins was performed using parallel reaction monitoring (PRM) and Western blot techniques. RESULTS: Compared to the sham surgery group, the model group exhibited prolonged escape latency and reduced number of platform crossings (P<0.01); compared with model group, the EA group showed reductions in escape latency and increased platform crossings after 7, 14, and 21 days of intervention (P<0.01, P<0.05). Compared to the 7 and 14-day intervention, the rats in the EA group of 21-day intervention showed the most significant improvements in reductions of escape latency and increased platform crossings (P<0.01, P<0.05), and was selected for further proteomic, PRM analyses, and Western blot validation. Compared to the sham surgery group, the model group displayed 71 differentially expressed proteins, with 50 up-regulated and 21 down-regulated proteins; compared to the model group, the EA group had 54 differentially expressed proteins, with 30 up-regulated and 24 down-regulated proteins. Functional enrichment and clustering analyses indicated that these proteins were primarily associated with cellular processes, metabolic processes, phagocytosis recognition, immune response, and regulation of extracellular matrix, etc. Enrichment was observed in the mammalian target of rapamycin (mTOR) signaling pathway and neurotrophic factors signaling pathways, involving glycogen synthase kinase 3ß (GSK3ß) and mitogen-activated protein kinase kinase 2 (Map2k2), with PRM and Western blot findings consistent with the proteomic results. Which meant that compared with the model group, the protein expression of GSK3ß and Map2k2 of hippocampus was increased in the EA group (P<0.01, P<0.05). CONCLUSION: EA at "Sishencong" (EX-HN 1) and "Fengchi" (GB 20) could improve cognitive function in VD rats, with the mechanism involving multiple targets and pathways, potentially related to GSK3ß, Map2k2 proteins, and the mTOR and neurotrophic factor signaling pathways.


Sujet(s)
Démence vasculaire , Électroacupuncture , Protéomique , Rat Sprague-Dawley , Animaux , Démence vasculaire/thérapie , Démence vasculaire/métabolisme , Mâle , Rats , Humains , Apprentissage du labyrinthe , Mémoire , Modèles animaux de maladie humaine
4.
Mol Cell ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-39019045

RÉSUMÉ

Despite the unique ability of pioneer factors (PFs) to target nucleosomal sites in closed chromatin, they only bind a small fraction of their genomic motifs. The underlying mechanism of this selectivity is not well understood. Here, we design a high-throughput assay called chromatin immunoprecipitation with integrated synthetic oligonucleotides (ChIP-ISO) to systematically dissect sequence features affecting the binding specificity of a classic PF, FOXA1, in human A549 cells. Combining ChIP-ISO with in vitro and neural network analyses, we find that (1) FOXA1 binding is strongly affected by co-binding transcription factors (TFs) AP-1 and CEBPB; (2) FOXA1 and AP-1 show binding cooperativity in vitro; (3) FOXA1's binding is determined more by local sequences than chromatin context, including eu-/heterochromatin; and (4) AP-1 is partially responsible for differential binding of FOXA1 in different cell types. Our study presents a framework for elucidating genetic rules underlying PF binding specificity and reveals a mechanism for context-specific regulation of its binding.

5.
Sci Total Environ ; 943: 173608, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-38848920

RÉSUMÉ

Soil organic carbon (SOC) is vital for the global carbon cycle and environmentally sustainable development. Meanwhile, the fast, convenient remote sensing technology has become one of the notable means to monitor SOC content. Nowadays, limitations are found in the inversion of SOC content with high-precision and complex spatial relationships based on scarce ground sample points. It is restrained by the spatial difference in the relationship between SOC content and remote sensing spectra due to the problem of different spectra for the same substance and the influence of topographic and environment (e.g. vegetation and climate). In this regard, the two-point machine learning (TPML) method, which can overcome above problems and deal with complex spatial heterogeneity of relationships between SOC and remote sensing spectra, is used to invert the SOC content in Hailun County, Heilongjiang Province, combined with derived variables from Sentinel-1, Sentinel-2, topography and environment. Based on 10-fold cross-validation and t-test, results indicate that the TPML method boasts the highest inversion accuracy, followed by random forest, gradient boosting regression tree, partial least squares regression and support vector machine. The average r, MAE, RMSE, and RPD of TPML are 0.854, 0.384 %, 0.558 %, and 1.918. Further, the TPML method has been proven to be equal to evaluating the uncertainty of inversion results, by comparing the actual and theoretical error of the inversion result in one subset. The spatial inversion result of SOC content with 10 m resolution by TPML is smoother and has more real details than other models, which are consistent with the distribution of SOC content in different land use types. This study provides both theoretical and technical guidance for using TPML method combined with spectral information of remote sensing to predict soil attributes and offer accurate uncertainty estimation, thereby opening up the opportunity for low-cost, high-precision, and large-scale SOC inversion.

6.
Genome Res ; 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38886069

RÉSUMÉ

Genome-wide nucleosome profiles are predominantly characterized using MNase-seq, which involves extensive MNase digestion and size selection to enrich for mono-nucleosome-sized fragments. Most available MNase-seq analysis packages assume that nucleosomes uniformly protect 147-bp DNA fragments. However, some nucleosomes with atypical histone or chemical compositions protect shorter lengths of DNA. The rigid assumptions imposed by current nucleosome analysis packages potentially prevent investigators from understanding the regulatory roles played by atypical nucleosomes. To enable the characterization of different nucleosome types from MNase-seq data, we introduce the Size-based Expectation Maximization (SEM) nucleosome-calling package. SEM employs a hierarchical Gaussian mixture model to estimate nucleosome positions and subtypes. Nucleosome subtypes are automatically identified based on the distribution of protected DNA fragments. Benchmark analysis indicates that SEM is on par with existing packages in terms of standard nucleosome-calling accuracy metrics, while uniquely providing the ability to characterize nucleosome subtype identities. Applying SEM to a low-dose MNase-H2B-ChIP-seq dataset from mouse embryonic stem cells, we identified three nucleosome types: short-fragment nucleosomes; canonical nucleosomes; and di-nucleosomes. Short-fragment nucleosomes can be divided further into two subtypes based on their chromatin accessibility. Interestingly, short-fragment nucleosomes in accessible regions exhibit high MNase sensitivity and are enriched at transcription start sites (TSSs) and CTCF peaks, similar to previously reported 'fragile nucleosomes'. These SEM-defined accessible short-fragment nucleosomes are found not just in promoters, but also in distal regulatory regions. Additional analyses reveal their colocalization with the chromatin remodelers Chd6, Chd8, and Ep400. In summary, SEM provides an effective platform for exploration of nonstandard nucleosome subtypes.

7.
Molecules ; 29(7)2024 Apr 07.
Article de Anglais | MEDLINE | ID: mdl-38611935

RÉSUMÉ

Immobilized metal ion affinity chromatography (IMAC) adsorbents generally have excellent affinity for histidine-rich proteins. However, the leaching of metal ions from the adsorbent usually affects its adsorption performance, which greatly affects the reusable performance of the adsorbent, resulting in many limitations in practical applications. Herein, a novel IMAC adsorbent, i.e., Cu(II)-loaded polydopamine-coated urchin-like titanate microspheres (Cu-PDA-UTMS), was prepared via metal coordination to make Cu ions uniformly decorate polydopamine-coated titanate microspheres. The as-synthesized microspheres exhibit an urchin-like structure, providing more binding sites for hemoglobin. Cu-PDA-UTMS exhibit favorable selectivity for hemoglobin adsorption and have a desirable adsorption capacity towards hemoglobin up to 2704.6 mg g-1. Using 0.1% CTAB as eluent, the adsorbed hemoglobin was easily eluted with a recovery rate of 86.8%. In addition, Cu-PDA-UTMS shows good reusability up to six cycles. In the end, the adsorption properties by Cu-PDA-UTMS towards hemoglobin from human blood samples were analyzed by SDS-PAGE. The results showed that Cu-PDA-UTMS are a high-performance IMAC adsorbent for hemoglobin separation, which provides a new method for the effective separation and purification of hemoglobin from complex biological samples.


Sujet(s)
Hémoglobines , Imidazoles , Indoles , Polymères , Humains , Microsphères , Chromatographie d'affinité , Ions
8.
Biosens Bioelectron ; 255: 116264, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38588629

RÉSUMÉ

Chemical-nose strategy has achieved certain success in the discrimination and identification of pathogens. However, this strategy usually relies on non-specific interactions, which are prone to be significantly disturbed by the change of environment thus limiting its practical usefulness. Herein, we present a novel chemical-nose sensing approach leveraging the difference in the dynamic metabolic variation during peptidoglycan metabolism among different species for rapid pathogen discrimination. Pathogens were first tethered with clickable handles through metabolic labeling at two different acidities (pH = 5 and 7) for 20 and 60 min, respectively, followed by click reaction with fluorescence up-conversion nanoparticles to generate a four-dimensional signal output. This discriminative multi-dimensional signal allowed eight types of model bacteria to be successfully classified within the training set into strains, genera, and Gram phenotypes. As the difference in signals of the four sensing channels reflects the difference in the amount/activity of enzymes involved in metabolic labeling, this strategy has good anti-interference capability, which enables precise pathogen identification within 2 h with 100% accuracy in spiked urinary samples and allows classification of unknown species out of the training set into the right phenotype. The robustness of this approach holds significant promise for its widespread application in pathogen identification and surveillance.


Sujet(s)
Techniques de biocapteur , Nanoparticules , Bactéries , Hydrolases , Apprentissage machine
9.
ACS Sens ; 9(4): 1945-1956, 2024 04 26.
Article de Anglais | MEDLINE | ID: mdl-38530950

RÉSUMÉ

Urinary tract infections (UTIs), which can lead to pyelonephritis, urosepsis, and even death, are among the most prevalent infectious diseases worldwide, with a notable increase in treatment costs due to the emergence of drug-resistant pathogens. Current diagnostic strategies for UTIs, such as urine culture and flow cytometry, require time-consuming protocols and expensive equipment. We present here a machine learning-assisted colorimetric sensor array based on recognition of ligand-functionalized Fe single-atom nanozymes (SANs) for the identification of microorganisms at the order, genus, and species levels. Colorimetric sensor arrays are built from the SAN Fe1-NC functionalized with four types of recognition ligands, generating unique microbial identification fingerprints. By integrating the colorimetric sensor arrays with a trained computational classification model, the platform can identify more than 10 microorganisms in UTI urine samples within 1 h. Diagnostic accuracy of up to 97% was achieved in 60 UTI clinical samples, holding great potential for translation into clinical practice applications.


Sujet(s)
Colorimétrie , Apprentissage machine , Infections urinaires , Infections urinaires/diagnostic , Infections urinaires/microbiologie , Infections urinaires/urine , Colorimétrie/méthodes , Humains , Fer/composition chimique , Techniques de biocapteur/méthodes
10.
Adv Sci (Weinh) ; 11(20): e2307487, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38520715

RÉSUMÉ

Collective cells, a typical active matter system, exhibit complex coordinated behaviors fundamental for various developmental and physiological processes. The present work discovers a collective radial ordered migration behavior of NIH3T3 fibroblasts that depends on persistent top-down regulation with 2D spatial confinement. Remarkably, individual cells move in a weak-oriented, diffusive-like rather than strong-oriented ballistic manner. Despite this, the collective movement is spatiotemporal heterogeneous and radial ordering at supracellular scale, manifesting as a radial ordered wavefront originated from the boundary and propagated toward the center of pattern. Combining bottom-up cell-to-extracellular matrix (ECM) interaction strategy, numerical simulations based on a developed mechanical model well reproduce and explain above observations. The model further predicts the independence of geometric features on this ordering behavior, which is validated by experiments. These results together indicate such radial ordered collective migration is ascribed to the couple of top-down regulation with spatial restriction and bottom-up cellular endogenous nature.


Sujet(s)
Mouvement cellulaire , Animaux , Souris , Mouvement cellulaire/physiologie , Cellules NIH 3T3 , Matrice extracellulaire/physiologie , Matrice extracellulaire/métabolisme , Fibroblastes/cytologie , Fibroblastes/physiologie
11.
ACS Sens ; 9(3): 1134-1148, 2024 03 22.
Article de Anglais | MEDLINE | ID: mdl-38363978

RÉSUMÉ

Exploring accurate, noninvasive, and inexpensive disease diagnostic sensors is a critical task in the fields of chemistry, biology, and medicine. The complexity of biological systems and the explosive growth of biomarker data have driven machine learning to become a powerful tool for mining and processing big data from disease diagnosis sensors. With the development of bioinformatics and artificial intelligence (AI), machine learning models formed by data mining have been able to guide more sensitive and accurate molecular computing. This review presents an overview of big data collection approaches and fundamental machine learning algorithms and discusses recent advances in machine learning and molecular computational disease diagnostic sensors. More specifically, we highlight existing modular workflows and key opportunities and challenges for machine learning to achieve disease diagnosis through big data mining.


Sujet(s)
Intelligence artificielle , Mégadonnées , Apprentissage machine , Fouille de données , Algorithmes
12.
Sci Data ; 11(1): 198, 2024 Feb 13.
Article de Anglais | MEDLINE | ID: mdl-38351164

RÉSUMÉ

We provide a remote sensing derived dataset for large-scale ground-mounted photovoltaic (PV) power stations in China of 2020, which has high spatial resolution of 10 meters. The dataset is based on the Google Earth Engine (GEE) cloud computing platform via random forest classifier and active learning strategy. Specifically, ground samples are carefully collected across China via both field survey and visual interpretation. Afterwards, spectral and texture features are calculated from publicly available Sentinel-2 imagery. Meanwhile, topographic features consisting of slope and aspect that are sensitive to PV locations are also included, aiming to construct a multi-dimensional and discriminative feature space. Finally, the trained random forest model is adopted to predict PV power stations of China parallelly on GEE. Technical validation has been carefully performed across China which achieved a satisfactory accuracy over 89%. Above all, as the first publicly released 10-m national-scale distribution dataset of China's ground-mounted PV power stations, it can provide data references for relevant researchers in fields such as energy, land, remote sensing and environmental sciences.

13.
IEEE Trans Cybern ; 54(5): 3065-3078, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-37018686

RÉSUMÉ

Synthetic aperture radar (SAR) is capable of obtaining the high-resolution 2-D image of the interested target scene, which enables advanced remote sensing and military applications, such as missile terminal guidance. In this article, the terminal trajectory planning for SAR imaging guidance is first investigated. It is found that the guidance performance of an attack platform is determined by the adopted terminal trajectory. Therefore, the aim of the terminal trajectory planning is to generate a set of feasible flight paths to guide the attack platform toward the target and meanwhile obtain the optimized SAR imaging performance for enhanced guidance precision. The trajectory planning is then modeled as a constrained multiobjective optimization problem given a high-dimensional search space, where the trajectory control and SAR imaging performance are comprehensively considered. By utilizing the temporal-order-dependent property of the trajectory planning problem, a chronological iterative search framework (CISF) is proposed. The problem is decomposed into a series of subproblems, where the search space, objective functions, and constraints are reformulated in chronological order. The difficulty of solving the trajectory planning problem is thus significantly alleviated. Then, the search strategy of CISF is devised to solve the subproblems successively. The optimization results of the preceding subproblem can be utilized as the initial input of the subsequent subproblems to enhance the convergence and search performance. Finally, a trajectory planning method is put forward based on CISF. Experimental studies demonstrate the effectiveness and superiority of the proposed CISF compared with the state-of-the-art multiobjective evolutionary methods. The proposed trajectory planning method can generate a set of feasible terminal trajectories with optimized mission performance.

14.
Anal Chem ; 96(1): 427-436, 2024 01 09.
Article de Anglais | MEDLINE | ID: mdl-38102083

RÉSUMÉ

The worldwide antimicrobial resistance (AMR) dilemma urgently requires rapid and accurate pathogen phenotype discrimination and antibiotic resistance identification. The conventional protocols are either time-consuming or depend on expensive instrumentations. Herein, we demonstrate a metabolic-labeling-assisted chemical nose strategy for phenotyping classification and antibiotic resistance identification of pathogens based on the "antibiotic-responsive spectrum" of different pathogens. d-Amino acids with click handles were metabolically incorporated into the cell wall of pathogens for further clicking with dibenzocyclooctyne-functionalized upconversion nanoparticles (DBCO-UCNPs) in the presence/absence of six types of antibiotics, which generates seven-channel sensing responses. With the assistance of machine learning algorithms, eight types of pathogens, including three types of antibiotic-resistant bacteria, can be well classified and discriminated in terms of microbial taxonomies, Gram phenotypes, and antibiotic resistance. The present metabolic-labeling-assisted strategy exhibits good anti-interference capability and improved discrimination ability rooted in the unique sensing mechanism. Sensitive identification of pathogens with 100% accuracy from artificial urinary tract infection samples at a concentration as low as 105 CFU/mL was achieved. Pathogens outside of the training set can also be discriminated well. This clearly demonstrated the potential of the present strategy in the identification of unknown pathogens in clinical samples.


Sujet(s)
Antibactériens , Bactéries , Antibactériens/pharmacologie , Résistance microbienne aux médicaments , Algorithmes , Tests de sensibilité microbienne
15.
Light Sci Appl ; 12(1): 298, 2023 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-38097537

RÉSUMÉ

In fluorescence microscopy, computational algorithms have been developed to suppress noise, enhance contrast, and even enable super-resolution (SR). However, the local quality of the images may vary on multiple scales, and these differences can lead to misconceptions. Current mapping methods fail to finely estimate the local quality, challenging to associate the SR scale content. Here, we develop a rolling Fourier ring correlation (rFRC) method to evaluate the reconstruction uncertainties down to SR scale. To visually pinpoint regions with low reliability, a filtered rFRC is combined with a modified resolution-scaled error map (RSM), offering a comprehensive and concise map for further examination. We demonstrate their performances on various SR imaging modalities, and the resulting quantitative maps enable better SR images integrated from different reconstructions. Overall, we expect that our framework can become a routinely used tool for biologists in assessing their image datasets in general and inspire further advances in the rapidly developing field of computational imaging.

16.
bioRxiv ; 2023 Nov 11.
Article de Anglais | MEDLINE | ID: mdl-37986839

RÉSUMÉ

Despite the unique ability of pioneer transcription factors (PFs) to target nucleosomal sites in closed chromatin, they only bind a small fraction of their genomic motifs. The underlying mechanism of this selectivity is not well understood. Here, we design a high-throughput assay called ChIP-ISO to systematically dissect sequence features affecting the binding specificity of a classic PF, FOXA1. Combining ChIP-ISO with in vitro and neural network analyses, we find that 1) FOXA1 binding is strongly affected by co-binding TFs AP-1 and CEBPB, 2) FOXA1 and AP-1 show binding cooperativity in vitro, 3) FOXA1's binding is determined more by local sequences than chromatin context, including eu-/heterochromatin, and 4) AP-1 is partially responsible for differential binding of FOXA1 in different cell types. Our study presents a framework for elucidating genetic rules underlying PF binding specificity and reveals a mechanism for context-specific regulation of its binding.

18.
bioRxiv ; 2023 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-37873361

RÉSUMÉ

The DNA-binding activities of transcription factors (TFs) are influenced by both intrinsic sequence preferences and extrinsic interactions with cell-specific chromatin landscapes and other regulatory proteins. Disentangling the roles of these binding determinants remains challenging. For example, the FoxA subfamily of Forkhead domain (Fox) TFs are known pioneer factors that can bind to relatively inaccessible sites during development. Yet FoxA TF binding also varies across cell types, pointing to a combination of intrinsic and extrinsic forces guiding their binding. While other Forkhead domain TFs are often assumed to have pioneering abilities, how sequence and chromatin features influence the binding of related Fox TFs has not been systematically characterized. Here, we present a principled approach to compare the relative contributions of intrinsic DNA sequence preference and cell-specific chromatin environments to a TF's DNA-binding activities. We apply our approach to investigate how a selection of Fox TFs (FoxA1, FoxC1, FoxG1, FoxL2, and FoxP3) vary in their binding specificity. We over-express the selected Fox TFs in mouse embryonic stem cells, which offer a platform to contrast each TF's binding activity within the same preexisting chromatin background. By applying a convolutional neural network to interpret the Fox TF binding patterns, we evaluate how sequence and preexisting chromatin features jointly contribute to induced TF binding. We demonstrate that Fox TFs bind different DNA targets, and drive differential gene expression patterns, even when induced in identical chromatin settings. Despite the association between Forkhead domains and pioneering activities, the selected Fox TFs display a wide range of affinities for preexiting chromatin states. Using sequence and chromatin feature attribution techniques to interpret the neural network predictions, we show that differential sequence preferences combined with differential abilities to engage relatively inaccessible chromatin together explain Fox TF binding patterns at individual sites and genome-wide.

19.
Eur J Pharmacol ; 959: 176075, 2023 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-37802279

RÉSUMÉ

Astrocytes and the activation of inflammatory factors are associated with depression. Tetrahydrocurcumin (THC), the principal metabolite of natural curcumin, is renowned for its anti-inflammatory properties. In this research, we explored the impact of THC on the expression of inflammatory factors, neurotrophins, and transforming growth factor ß1 (TGF-ß1) in the prefrontal cortex after chronic restraint stress (CRS) in mice and in lipopolysaccharide (LPS)-induced TNC1 astrocytes. Our findings indicated that THC mitigated the anxiety and depression-like behaviours observed in CRS mice. It also influenced the expression of TGF-ß1, p-SMAD3/SMAD3, sirtuin 1 (SIRT1), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), inducible nitric oxide synthase (iNOS), and tumour necrosis factor α (TNF-α). Specifically, THC augmented the expressions of TGF-ß1, p-SMAD3/SMAD3, SIRT1, BDNF, and GDNF, whilst diminishing the expressions of iNOS and TNF-α in LPS-induced astrocytes. However, when pre-treated with SB431542, a TGF-ß1 receptor inhibitor, it nullified the aforementioned effects of THC on astrocytes. Our results propose that THC delivers its anti-depressive effects through the activation of TGF-ß1, enhancement of p-SMAD3/SMAD3 and SIRT1 expression, upregulation of BDNF and GDNF, and downregulation of iNOS and TNF-α. This research furnishes new perspectives on the anti-inflammatory mechanism that underpins the antidepressant-like impact of THC.


Sujet(s)
Facteur neurotrophique dérivé du cerveau , Facteur de croissance transformant bêta-1 , Souris , Animaux , Facteur de croissance transformant bêta-1/métabolisme , Facteur neurotrophique dérivé du cerveau/métabolisme , Facteur neurotrophique dérivé des cellules gliales/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Lipopolysaccharides/pharmacologie , Lipopolysaccharides/métabolisme , Sirtuine-1/métabolisme , Transduction du signal , Cellules cultivées , Anti-inflammatoires/pharmacologie , Protéine Smad-3/métabolisme
20.
bioRxiv ; 2023 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-37904910

RÉSUMÉ

Genome-wide nucleosome profiles are predominantly characterized using MNase-seq, which involves extensive MNase digestion and size selection to enrich for mono-nucleosome-sized fragments. Most available MNase-seq analysis packages assume that nucleosomes uniformly protect 147bp DNA fragments. However, some nucleosomes with atypical histone or chemical compositions protect shorter lengths of DNA. The rigid assumptions imposed by current nucleosome analysis packages ignore variation in nucleosome lengths, potentially blinding investigators to regulatory roles played by atypical nucleosomes. To enable the characterization of different nucleosome types from MNase-seq data, we introduce the Size-based Expectation Maximization (SEM) nucleosome calling package. SEM employs a hierarchical Gaussian mixture model to estimate the positions and subtype identity of nucleosomes from MNase-seq fragments. Nucleosome subtypes are automatically identified based on the distribution of protected DNA fragment lengths at nucleosome positions. Benchmark analysis indicates that SEM is on par with existing packages in terms of standard nucleosome-calling accuracy metrics, while uniquely providing the ability to characterize nucleosome subtype identities. Using SEM on a low-dose MNase H2B MNase-ChIP-seq dataset from mouse embryonic stem cells, we identified three nucleosome types: short-fragment nucleosomes, canonical nucleosomes, and di-nucleosomes. The short-fragment nucleosomes can be divided further into two subtypes based on their chromatin accessibility. Interestingly, the subset of short-fragment nucleosomes in accessible regions exhibit high MNase sensitivity and display distribution patterns around transcription start sites (TSSs) and CTCF peaks, similar to the previously reported "fragile nucleosomes". These SEM-defined accessible short-fragment nucleosomes are found not just in promoters, but also in enhancers and other regulatory regions. Additional investigations reveal their co-localization with the chromatin remodelers Chd6, Chd8, and Ep400. In summary, SEM provides an effective platform for distinguishing various nucleosome subtypes, paving the way for future exploration of non-standard nucleosomes.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE