Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 63
Filtrer
1.
J Neurosci ; 44(34)2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39019613

RÉSUMÉ

Although anesthesia provides favorable conditions for surgical procedures, recent studies have revealed that the brain remains active in processing noxious signals even during anesthesia. However, whether and how these responses affect the anesthesia effect remains unclear. The ventrolateral periaqueductal gray (vlPAG), a crucial hub for pain regulation, also plays an essential role in controlling general anesthesia. Hence, it was hypothesized that the vlPAG may be involved in the regulation of general anesthesia by noxious stimuli. Here, we found that acute noxious stimuli, including capsaicin-induced inflammatory pain, acetic acid-induced visceral pain, and incision-induced surgical pain, significantly delayed recovery from sevoflurane anesthesia in male mice, whereas this effect was absent in the spared nerve injury-induced chronic pain. Pretreatment with peripheral analgesics could prevent the delayed recovery induced by acute nociception. Furthermore, we found that acute noxious stimuli, induced by the injection of capsaicin under sevoflurane anesthesia, increased c-Fos expression and activity in the GABAergic neurons of the ventrolateral periaqueductal gray. Specific reactivation of capsaicin-activated vlPAGGABA neurons mimicked the effect of capsaicin and its chemogenetic inhibition prevented the delayed recovery from anesthesia induced by capsaicin. Finally, we revealed that the vlPAGGABA neurons regulated the recovery from anesthesia through the inhibition of ventral tegmental area dopaminergic neuronal activity, thus decreasing dopamine (DA) release and activation of DA D1-like receptors in the brain. These findings reveal a novel, cell- and circuit-based mechanism for regulating anesthesia recovery by nociception, and it is important to provide new insights for guiding the management of the anesthesia recovery period.


Sujet(s)
Anesthésiques par inhalation , Souris de lignée C57BL , Nociception , Substance grise centrale du mésencéphale , Sévoflurane , Sévoflurane/pharmacologie , Animaux , Mâle , Souris , Anesthésiques par inhalation/pharmacologie , Nociception/effets des médicaments et des substances chimiques , Nociception/physiologie , Substance grise centrale du mésencéphale/effets des médicaments et des substances chimiques , Substance grise centrale du mésencéphale/métabolisme , Mésencéphale/effets des médicaments et des substances chimiques , Conscience/effets des médicaments et des substances chimiques , Conscience/physiologie , Réveil anesthésique , Capsaïcine/pharmacologie , Neurones GABAergiques/effets des médicaments et des substances chimiques , Neurones GABAergiques/physiologie
2.
Nat Commun ; 15(1): 4947, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38858350

RÉSUMÉ

The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.


Sujet(s)
Acide glutamique , Hyperalgésie , Neurones , Noyau accumbens , Aire tegmentale ventrale , Animaux , Mâle , Hyperalgésie/physiopathologie , Aire tegmentale ventrale/physiopathologie , Souris , Acide glutamique/métabolisme , Noyau accumbens/physiopathologie , Neurones/métabolisme , Mésencéphale , Souris de lignée C57BL , Résilience psychologique , Habénula , Modèles animaux de maladie humaine
3.
ACS Appl Mater Interfaces ; 16(27): 35752-35760, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38917413

RÉSUMÉ

Metal halide perovskite materials with excellent carrier transport properties have been regarded as a new class of catalysts with great application potential. However, their development is hampered by their instability in polar solvents and high temperatures. Herein, we report a solution-processed Cs2MoCl6 perovskite nanocrystals (NCs) capped with the Mo6+, showing high thermostability in polar solvents. Furthermore, the Pd single atoms (PdSA) can be anchored on the surface of Cs2MoCl6 NCs through the unique coordination structure of Pd-Cl sites, which exhibit excellent semihydrogenation of different alkyne derivatives with high selectivity at full conversion at room temperature. Moreover, the activity could be improved greatly under Xe lamp irradiation. Detailed experimental characterization and DFT calculations indicate the improved activity under light illumination is due to the synergistic effect of photo-to-heat conversion and photoinduced electron transfer from Cs2MoCl6 to PdSA, which facilitates the activation of the C≡C group. This work not only provides a new catalyst for high selective semihydrogenation of alkyne derivatives but also opens a new avenue for metal halides as photothermal catalysts.

4.
Gen Physiol Biophys ; 43(2): 153-162, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38477605

RÉSUMÉ

Endothelial damage caused by persistent glucose and lipid metabolism disorders is the main reason of diabetic vascular diseases. Daidzein exerts positive effects on vascular dysfunction. Peroxisome proliferator-activated receptors (PPARs) regulate critically glucose and lipid metabolism. However, the interaction of daidzein to PPARs is still insufficiently explored. In this study, the cell proliferation was detected by EdU. The intrinsic activity and binding affinity of daidzein for human PPARs (hPPARs) were estimated by transactivation reporter gene test and HPLC-UV method, respectively. Daidzein significantly reversed high glucose (HG, at 30 mmol/l)-induced injury in HUVECs, which was inhibited by both PPARα and PPARγ antagonist, but no PPARß antagonist. Daidzein selectively activated hPPARα and hPPARγ1, but weakly hPPARß. Additionally, daidzein also bound to both hPPARα and hPPARγ1. The findings suggested that daidzein may be a PPARα and PPARγ dual-agonist. The amelioration of daidzein on HUVECs from hyperglycemia may be mediated by the activation of PPARα and PPARγ receptors.


Sujet(s)
Isoflavones , Récepteur PPAR alpha , Récepteur PPAR gamma , Humains , Récepteur PPAR alpha/métabolisme , Cellules endothéliales , Glucose
5.
Mol Psychiatry ; 2024 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-38454083

RÉSUMÉ

Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.

6.
J Neurosci ; 44(13)2024 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-38378273

RÉSUMÉ

Patients with chronic pain often develop comorbid depressive symptoms, which makes the pain symptoms more complicated and refractory. However, the underlying mechanisms are poorly known. Here, in a repeated complete Freund's adjuvant (CFA) male mouse model, we reported a specific regulatory role of the paraventricular thalamic nucleus (PVT) glutamatergic neurons, particularly the anterior PVT (PVA) neurons, in mediating chronic pain and depression comorbidity (CDC). Our c-Fos protein staining observed increased PVA neuronal activity in CFA-CDC mice. In wild-type mice, chemogenetic activation of PVA glutamatergic neurons was sufficient to decrease the 50% paw withdrawal thresholds (50% PWTs), while depressive-like behaviors evaluated with immobile time in tail suspension test (TST) and forced swim test (FST) could only be achieved by repeated chemogenetic activation. Chemogenetic inhibition of PVA glutamatergic neurons reversed the decreased 50% PWTs in CFA mice without depressive-like symptoms and the increased TST and FST immobility in CFA-CDC mice. Surprisingly, in CFA-CDC mice, chemogenetically inhibiting PVA glutamatergic neurons failed to reverse the decrease of 50% PWTs, which could be restored by rapid-onset antidepressant S-ketamine. Further behavioral tests in chronic restraint stress mice and CFA pain mice indicated that PVA glutamatergic neuron inhibition and S-ketamine independently alleviate sensory and affective pain. Molecular profiling and pharmacological studies revealed the 5-hydroxytryptamine receptor 1D (Htr1d) in CFA pain-related PVT engram neurons as a potential target for treating CDC. These findings identified novel CDC neuronal and molecular mechanisms in the PVT and provided insight into the complicated pain neuropathology under a comorbid state with depression and related drug development.


Sujet(s)
Douleur chronique , Kétamine , Humains , Souris , Mâle , Animaux , Douleur chronique/métabolisme , Dépression/traitement médicamenteux , Thalamus , Neurones/métabolisme , Comorbidité
7.
Environ Toxicol ; 39(5): 2634-2641, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38205902

RÉSUMÉ

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a widespread inflammatory disease with a high mortality rate. Long noncoding RNAs play important roles in pulmonary diseases and are potential targets for inflammation intervention. METHODS: The expression of small nucleolar RNA host gene 6 (SNHG6) in mouse lung epithelial cell line MLE12 with or without cigarette smoke extract (CSE) treatment was first detected using quantitative reverse-transcription PCR. ELISA was used to evaluate the release of inflammatory cytokines (TNF-α, IL-1ß, and IL-6). The binding site of miR-182-5p with SNHG6 was predicted by using miRanda, which was verified by double luciferase reporter assay. RESULTS: Here, we revealed that SNHG6 was upregulated in CS-exposed MLE12 alveolar epithelial cells and lungs from COPD-model mice. SNHG6 silencing weakened CS-induced inflammation in MLE12 cells and mouse lungs. Mechanistic investigations revealed that SNHG6 could upregulate IκBα kinase through sponging the microRNA miR-182-5p, followed by activated NF-κB signaling. The suppressive effects of SNHG6 silencing on CS-induced inflammation were blocked by an miR-182-5p inhibitor. CONCLUSION: Overall, our findings suggested that SNHG6 regulates CS-induced inflammation in COPD by activating NF-κB signaling, thereby offering a novel potential target for COPD treatment.


Sujet(s)
Fumer des cigarettes , microARN , Pneumopathie infectieuse , Broncho-pneumopathie chronique obstructive , ARN long non codant , Souris , Animaux , Facteur de transcription NF-kappa B/métabolisme , ARN long non codant/génétique , ARN long non codant/métabolisme , Fumer des cigarettes/effets indésirables , Pneumopathie infectieuse/induit chimiquement , Pneumopathie infectieuse/génétique , microARN/génétique , microARN/métabolisme , Broncho-pneumopathie chronique obstructive/induit chimiquement , Broncho-pneumopathie chronique obstructive/génétique , Broncho-pneumopathie chronique obstructive/métabolisme , Inflammation/génétique , Inflammation/métabolisme
8.
Neurobiol Dis ; 190: 106374, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38097092

RÉSUMÉ

Despite women representing most of those affected by major depression, preclinical studies have focused almost exclusively on male subjects, partially due to a lack of ideal animal paradigms. As the persistent need regarding the sex balance of neuroscience research and female-specific pathology of mental disorders surges, the establishment of natural etiology-based and systematically validated animal paradigms for depression with female subjects becomes an urgent scientific problem. This study aims to establish, characterize, and validate a "Multiple Integrated Social Stress (MISS)" model of depression in female C57BL/6J mice by manipulating and integrating daily social stressors that females are experiencing. Female C57BL/6J mice randomly experienced social competition failure in tube test, modified vicarious social defeat stress, unescapable overcrowding stress followed by social isolation on each day, for ten consecutive days. Compared with their controls, female MISS mice exhibited a relatively decreased preference for social interaction and sucrose, along with increased immobility in the tail suspension test, which could last for at least one month. These MISS mice also exhibited increased levels of blood serum corticosterone, interleukin-6 L and 1ß. In the pharmacological experiment, MISS-induced dysfunctions in social interaction, sucrose preference, and tail suspension tests were amended by systematically administrating a single dose of sub-anesthetic ketamine, a rapid-onset antidepressant. Compared with controls, MISS females exhibited decreased c-Fos activation in their anterior cingulate cortex, prefrontal cortex, nucleus accumbens and some other depression-related brain regions. Furthermore, 24 h after the last exposure to the paradigm, MISS mice demonstrated a decreased center zone time in the open field test and decreased open arm time in the elevated plus-maze test, indicating anxiety-like behavioral phenotypes. Interestingly, MISS mice developed an excessive nesting ability, suggesting a likely behavioral phenotype of obsessive-compulsive disorder. These data showed that the MISS paradigm was sufficient to generate pathological profiles in female mice to mimic core symptoms, serum biochemistry and neural adaptations of depression in clinical patients. The present study offers a multiple integrated natural etiology-based animal model tool for studying female stress susceptibility.


Sujet(s)
Trouble dépressif , Humains , Mâle , Femelle , Animaux , Souris , Souris de lignée C57BL , Antidépresseurs , Encéphale , Saccharose/usage thérapeutique , Stress psychologique/complications , Dépression/étiologie , Modèles animaux de maladie humaine
9.
J Neuropathol Exp Neurol ; 82(9): 806-813, 2023 08 21.
Article de Anglais | MEDLINE | ID: mdl-37478479

RÉSUMÉ

Neuropathic pain has a complex pathogenesis. Here, we examined the role of caveolin-1 (Cav-1) in the anterior cingulate cortex (ACC) in a chronic constriction injury (CCI) mouse model for the enhancement of presynaptic glutamate release in chronic neuropathic pain. Cav-1 was localized in glutamatergic neurons and showed higher expression in the ACC of CCI versus sham mice. Moreover, the release of glutamate from the ACC of the CCI mice was greater than that of the sham mice. Inhibition of Cav-1 by siRNAs greatly reduced the release of glutamate of ACC, while its overexpression (induced by injecting Lenti-Cav-1) reversed this process. The chemogenetics method was then used to activate or inhibit glutamatergic neurons in the ACC area. After 21 days of injection of AAV-hM3Dq in the sham mice, the release of glutamate was increased, the paw withdrawal latency was shortened, and expression of Cav-1 in the ACC was upregulated after intraperitoneal injection of 2 mg/kg clozapine N-oxide. Injection of AAV-hM4Di in the ACC of CCI mice led to the opposite effects. Furthermore, decreasing Cav-1 in the ACC in sham mice injected with rAAV-hM3DGq did not increase glutamate release. These findings suggest that Cav-1 in the ACC is essential for enhancing glutamate release in neuropathic pain.


Sujet(s)
Acide glutamique , Névralgie , Animaux , Souris , Cavéoline-1/génétique , Cavéoline-1/métabolisme , Acide glutamique/métabolisme , Gyrus du cingulum/métabolisme , Névralgie/métabolisme , Névralgie/anatomopathologie , Neurones/anatomopathologie
10.
RSC Med Chem ; 14(7): 1254-1259, 2023 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-37484565

RÉSUMÉ

Considering the millions of COVID-19 patients worldwide, a global critical challenge of low-cost and efficient anti-COVID-19 drug production has emerged. Favipiravir is one of the potential anti-COVID-19 drugs, but its original synthetic route with 7 harsh steps gives a low product yield (0.8%) and has a high cost ($68 per g). Herein, we demonstrated a low-cost and efficient synthesis route for favipiravir designed using improved retrosynthesis software, which involves only 3 steps under safe and near-ambient air conditions. A yield of 32% and cost of $1.54 per g were achieved by this synthetic route. We also used the same strategy to optimize the synthesis of sabizabulin. We anticipate that these synthetic routes will contribute to the prevention and treatment of COVID-19.

11.
J Neurosci ; 43(24): 4525-4540, 2023 06 14.
Article de Anglais | MEDLINE | ID: mdl-37188517

RÉSUMÉ

Our recent study demonstrated the critical role of the mesolimbic dopamine (DA) circuit and its brain-derived neurotropic factor (BDNF) signaling in mediating neuropathic pain. The present study aims to investigate the functional role of GABAergic inputs from the lateral hypothalamus (LH) to the ventral tegmental area (VTA; LHGABA→VTA) in regulating the mesolimbic DA circuit and its BDNF signaling underlying physiological and pathologic pain. We demonstrated that optogenetic manipulation of the LHGABA→VTA projection bidirectionally regulated pain sensation in naive male mice. Optogenetic inhibition of this projection generated an analgesic effect in mice with pathologic pain induced by chronic constrictive injury (CCI) of the sciatic nerve and persistent inflammatory pain by complete Freund's adjuvant (CFA). Trans-synaptic viral tracing revealed a monosynaptic connection between LH GABAergic neurons and VTA GABAergic neurons. Functionally, in vivo calcium/neurotransmitter imaging showed an increased DA neuronal activity, decreased GABAergic neuronal activity in the VTA, and increased dopamine release in the NAc, in response to optogenetic activation of the LHGABA→VTA projection. Furthermore, repeated activation of the LHGABA→VTA projection was sufficient to increase the expression of mesolimbic BDNF protein, an effect seen in mice with neuropathic pain. Inhibition of this circuit induced a decrease in mesolimbic BDNF expression in CCI mice. Interestingly, the pain behaviors induced by activation of the LHGABA→VTA projection could be prevented by pretreatment with intra-NAc administration of ANA-12, a TrkB receptor antagonist. These results demonstrated that LHGABA→VTA projection regulated pain sensation by targeting local GABAergic interneurons to disinhibit the mesolimbic DA circuit and regulating accumbal BDNF release.SIGNIFICANCE STATEMENT The mesolimbic dopamine (DA) system and its brain-derived neurotropic factor (BDNF) signaling have been implicated in pain regulation, however, underlying mechanisms remain poorly understood. The lateral hypothalamus (LH) sends different afferent fibers into and strongly influences the function of mesolimbic DA system. Here, utilizing cell type- and projection-specific viral tracing, optogenetics, in vivo calcium and neurotransmitter imaging, our current study identified the LHGABA→VTA projection as a novel neural circuit for pain regulation, possibly by targeting the VTA GABA-ergic neurons to disinhibit mesolimbic pathway-specific DA release and BDNF signaling. This study provides a better understanding of the role of the LH and mesolimbic DA system in physiological and pathological pain.


Sujet(s)
Dopamine , Névralgie , Souris , Mâle , Animaux , Dopamine/métabolisme , Aire hypothalamique latérale/physiologie , Facteur neurotrophique dérivé du cerveau/métabolisme , Calcium/métabolisme , Aire tegmentale ventrale/physiologie , Neurones GABAergiques/physiologie , Acide gamma-amino-butyrique/métabolisme , Névralgie/métabolisme , Sensation , Noyau accumbens/physiologie
12.
Pharmacol Res ; 191: 106776, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-37084858

RÉSUMÉ

The paucity of medications with novel mechanisms for pain treatment combined with the severe adverse effects of opioid analgesics has led to an imperative pursuit of non-opioid analgesia and a better understanding of pain mechanisms. Here, we identify the putative glutamatergic inputs from the paraventricular thalamic nucleus to the nucleus accumbens (PVTGlut→NAc) as a novel neural circuit for pain sensation and non-opioid analgesia. Our in vivo fiber photometry and in vitro electrophysiology experiments found that PVTGlut→NAc neuronal activity increased in response to acute thermal/mechanical stimuli and persistent inflammatory pain. Direct optogenetic activation of these neurons in the PVT or their terminals in the NAc induced pain-like behaviors. Conversely, inhibition of PVTGlut→NAc neurons or their NAc terminals exhibited a potent analgesic effect in both naïve and pathological pain mice, which could not be prevented by pretreatment of naloxone, an opioid receptor antagonist. Anterograde trans-synaptic optogenetic experiments consistently demonstrated that the PVTGlut→NAc circuit bi-directionally modulates pain behaviors. Furthermore, circuit-specific molecular profiling and pharmacological studies revealed dopamine receptor 3 as a candidate target for pain modulation and non-opioid analgesic development. Taken together, these findings provide a previously unknown neural circuit for pain sensation and non-opioid analgesia and a valuable molecular target for developing future safer medication.


Sujet(s)
Analgésie , Analgésiques non narcotiques , Souris , Animaux , Noyaux médians du thalamus , Noyau accumbens/physiologie , Douleur/traitement médicamenteux
13.
Nanoscale Horiz ; 8(7): 852-858, 2023 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-36975185

RÉSUMÉ

A new catalytic approach is pioneered to achieve CO2 methanation via a single atom alloy Ir/Ni catalyst using a ball-milling method. This Ir/Ni catalyst exhibits a TOFCH4 of 10244 h-1 and a 220 h lifetime at 350 °C without deactivation, illustrating excellent catalytic efficiency in the presence of mechanical energy.

14.
Microvasc Res ; 148: 104531, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-36963481

RÉSUMÉ

In diabetes mellitus (DM), high glucose can result in endothelial cell injury, and then lead to diabetic vascular complications. Gastrodin, as the mainly components of Chinese traditional herb Tianma (Gastrodia elata Bl.), has been widely used for cardiovascular diseases. However, the known of the effect of gastrodin on endothelial cell injury is still limited. In this study, we aimed to investigate the effect and possible mechanism of gastrodin on high glucose-injured human umbilical vein endothelial cells (HUVEC). High glucose (30 mmol/L) treatment caused HUVEC injury. After gastrodin (0.1, 1, 10 µmol/L) treatment, compared with the high glucose group, the cell proliferation ability increased in a dose-dependent manner. Meanwhile, gastrodin (10 µmol/L) up-regulated the mRNA and protein expressions of PPARß and eNOS, decreased the expressions of iNOS, also reduced the protein expression of 3-nitrotyrosine, and lowed the level of ONOO-, increased NO content. Both the PPARß antagonist GSK0660 (1 µmol/L) and the eNOS inhibitor L-NAME (10 µmol/L) were able to block the above effects of gastrodin. In conclusion, gastrodin protectes vascular endothelial cells from high glucose injury, which may be, at least partly, mediated by up-regulating the expression of PPARß and negatively regulating nitrative stress.


Sujet(s)
Récepteur PPAR bêta , Humains , Récepteur PPAR bêta/métabolisme , Régulation positive , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Glucose/toxicité , Glucose/métabolisme
15.
Br J Anaesth ; 130(4): 446-458, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36737387

RÉSUMÉ

BACKGROUND: Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS: With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS: PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS: CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.


Sujet(s)
Anesthésie , Isoflurane , Souris , Animaux , Corticolibérine/métabolisme , Corticolibérine/pharmacologie , Noyau paraventriculaire de l'hypothalamus/métabolisme , Isoflurane/pharmacologie , Hypothalamus/métabolisme
16.
Adv Sci (Weinh) ; 10(8): e2206687, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-36642842

RÉSUMÉ

CO2 cycloaddition with epoxides is a key catalytic procedure for CO2 utilization. Several metal-based catalysts with cocatalysts are developed for photo-driven CO2 cycloaddition, while facing difficulties in product purification and continuous reaction. Here, poly(ionic liquid)s are proposed as metal-free catalysts for photo-driven CO2 cycloaddition without cocatalysts. A series of poly(ionic liquid)s with donor-acceptor segments are fabricated and their photo-driven catalytic performance (conversion rate of 83.5% for glycidyl phenyl ether) outstrips (≈4.9 times) their thermal-driven catalytic performance (17.2%) at the same temperature. Mechanism studies confirm that photo-induced charge separation is promoted by the donor-acceptor segments and can accelerate the CO2 cycloaddition reaction. This work paves the way for the further use of poly(ionic liquid)s as catalysts in photo-driven CO2 cycloaddition.

17.
Chemistry ; 29(10): e202203108, 2023 Feb 16.
Article de Anglais | MEDLINE | ID: mdl-36401597

RÉSUMÉ

Due to the limited resources and high cost of noble metals, boosting their catalytic activities is highly desired in the current catalysis industry. Here, we report a synergetic catalyst, combining Pd2+ and Pd0 species in a nitrogen-doped porous carbons (NPC), which shows boosted catalytic activities in hydrogenation reactions of organic nitro compounds (nitrobenzene, 4-nitrophenol, 1-nitronaphthalene and 1-nitropropane) under near ambient conditions. This synergetic catalyst NPC-[Pd] was synthesized by partial reduction of a palladium-loaded NPC. The catalytic activities and selectivity of NPC-[Pd] for hydrogenation were enhanced significantly compared with those of NPC-Pd2+ or NPC-Pd0 nanoparticles. Theoretical calculations show that H2 preferentially dissociates on Pd nanoparticles, and then organic molecules (nitrobenzene) can be captured and react with the dissociated H atom on Pd2+ sites. Similar reaction procedure also occur on Pt or Rh. Hydrogenation of different aromatic compounds with different functional groups (naphthalene, 4-nitrochlorobenzene, benzaldehyde and acetophenone) confirmed the broad excellent catalytic activity of this synergistic catalyst.

18.
Contrast Media Mol Imaging ; 2022: 5687245, 2022.
Article de Anglais | MEDLINE | ID: mdl-36262980

RÉSUMÉ

Lung cancer in its occurrence and development of different stages exist different biological behavior changes. This paper studies the expression of heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 in benign and malignant lung lesions and its early diagnosis value of nonsmall-cell lung cancer (NSCLC), aiming to provide reference for the early diagnosis and therapy of NSCLC. Some lung surgery specimens are selected from January 2021 to March 2022. All cases received no radiotherapy and chemotherapy before surgery, including 90 sufferers with benign lung lesions as the contrast set. hnRNP A2/B1 expressions are measured for comparison. The experimental results show that for lung cancer sufferers, the positive expression of hnRNP A2/B1 in their malignant lesion tissue is notoriously higher than that in their benign lesion tissue, and hnRNP A2/B1 is differently expressed in different differentiation and in different stages.


Sujet(s)
Carcinome pulmonaire non à petites cellules , Ribonucléoprotéine nucléaire hétérogène du groupe A-B , Tumeurs du poumon , Humains , Dépistage précoce du cancer , Carcinome pulmonaire non à petites cellules/anatomopathologie , Ribonucléoprotéine nucléaire hétérogène du groupe A-B/génétique , Ribonucléoprotéine nucléaire hétérogène du groupe A-B/métabolisme , Tumeurs du poumon/anatomopathologie , Poumon/anatomopathologie
19.
Mediators Inflamm ; 2022: 5791915, 2022.
Article de Anglais | MEDLINE | ID: mdl-35769208

RÉSUMÉ

Nonalcoholic steatohepatitis (NASH) is the common liver disease characterized by hepatic steatosis, inflammation, and fibrosis; there are no approved drugs to treat this disease because of incomplete understanding of pathophysiological mechanisms of NASH. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a multifunctional glycoprotein, has shown anti-inflammation and antifibrosis. Here, MFG-E8 was shown to play a key role in NASH progression. Using methionine and choline deficient (MCD) diet-fed mice, we found MFG-E8 knockout exacerbated hepatic damage and steatosis as indicated by increased plasma transaminases activities and hepatic histopathologic change, higher hepatic triglycerides (TGs), and lipid accumulation. Moreover, liver fibrosis and inflammation elicited by MCD were aggravated in MFG-E8 knockout mice. Mechanistically, MFG-E8 knockout facilitated activation of hepatic toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway in MCD-fed mice. In vitro experiment, the TLR4 specific antagonist TAK-242 rescued palmitic acid- (PA-) primed lipid formation and inflammation in MFG-E8 knockout primary murine hepatocytes. These findings indicated that MFG-E8 is involved in the progression of NASH and the possible mechanism by which MFG-E8 knockout exacerbated NASH in mice is associated with activation of the TLR4/NF-κB signaling pathway.


Sujet(s)
Antigènes de surface , Protéines de lait , Facteur de transcription NF-kappa B , Stéatose hépatique non alcoolique , Récepteur de type Toll-4 , Animaux , Antigènes de surface/métabolisme , Métabolisme lipidique , Méthionine/métabolisme , Souris , Souris de lignée C57BL , Souris knockout , Protéines de lait/métabolisme , Facteur de transcription NF-kappa B/métabolisme , Stéatose hépatique non alcoolique/métabolisme , Transduction du signal , Récepteur de type Toll-4/métabolisme
20.
Phys Chem Chem Phys ; 24(5): 2901-2908, 2022 Feb 02.
Article de Anglais | MEDLINE | ID: mdl-35072674

RÉSUMÉ

CO2 reduction by H2 using metal-free catalysts is highly challenging. Frustrated Lewis pairs (FLPs) have been considered potential metal-free catalysts for this reaction. However, most FLPs are unstable, which limits their practical applications. In this study, a class of novel metal-free catalysts composed of K3-nHnPO4 (n = 0, 1, 2) and B(C6F5-mHm)3 (m = 0, 3, 5) were prepared and identified as effective catalysts for CO2 hydrogenation to formate by density functional theory (DFT) calculations. The simulations show that the B-H bond formation is the rate-determining step (RDS). The acid/base strength and repulsive steric interactions affect the corresponding energy barrier. Therefore, the catalytic performance can be improved by choosing a suitable Lewis acid or base. Among these catalysts, the B(C6H5)3-KH2PO4 pair, with the lowest barrier height (26.3 kcal mol-1) in RDS, is suggested as a promising metal-free catalyst for CO2 hydrogenation. This study may provide strategies for designing new LP-based metal-free catalysts.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE