Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 14(1): 16428, 2024 07 16.
Article de Anglais | MEDLINE | ID: mdl-39013961

RÉSUMÉ

Studies investigating the relationship between dietary vitamin B1 intake and risk of Hyperuricemia (HU) are scarce, the present study aimed to examine the association of dietary vitamin B1 intake and HU among adults. This cross-sectional study included 5750 adults whose data derived from National Health and Nutrition Examination Survey (NHANES) from March 2017 to March 2020. The dietary intake of vitamin B1 was assessed using 24-h dietary recall interviews. The characteristics of study participants were grouped into five levels according to the levels of vitamin B1 quintile. Multivariate logistic regression analysis was used to estimate the odds ratio (OR) and 95% confidence interval (CI) of HU, according to the vitamin B1 intake quintile for male and female separately. The dose-response relationship was determined by the restricted cubic spline (RCS). Smoothed curve fitting was used to assess serum uric acid concentration versus dietary vitamin B1 intake in the study population. The prevalence of hyperuricemia was 18.90% (20.15% and 17.79% for males and females, respectively) in the United States from March 2017 to March 2020. Multiple logistic regression analyses showed that in the male population, the HU ratio (OR) of vitamin B1 intake in Q2 to Q5 compared with the lowest quintile (Q1) was 0.75 (95% CI 0.52, 1.09), 0.70 (95% CI 0.48, 1.02), 0.66 (95% CI 0.44, 0.99) and 0.55 (95% CI 0.34, 0.90). The P for trend was 0.028. In women, the ORs for vitamin B1 intake Q2 to Q5 were 0.87 (95% CI 0.64, 1.19), 0.97 (0.68-1.38), 1.05 (0.69-1.60) and 0.75 (0.42-1.34), respectively. The P for trend was 0.876. The RCS curve revealed a linear relationship between vitamin B1 intake and the risk of hyperuricemia in men (P nonlinear = 0.401). Smoothed curve fitting demonstrated a negative association between vitamin B1 intake and serum uric acid concentration in men, whereas there was no significant association between dietary vitamin B1 intake and the risk of hyperuricemia in women. In the US adult population, dietary vitamin B1 intake was negatively associated with hyperuricemia in males.


Sujet(s)
Hyperuricémie , Enquêtes nutritionnelles , Thiamine , Acide urique , Humains , Hyperuricémie/épidémiologie , Hyperuricémie/sang , Hyperuricémie/étiologie , Mâle , Femelle , Adulte d'âge moyen , Adulte , Études transversales , Acide urique/sang , Thiamine/administration et posologie , Thiamine/sang , Prévalence , Régime alimentaire , Odds ratio , Facteurs de risque , Sujet âgé , États-Unis/épidémiologie
2.
Am J Cancer Res ; 13(8): 3482-3499, 2023.
Article de Anglais | MEDLINE | ID: mdl-37693144

RÉSUMÉ

Angiogenesis is essential for the growth and metastasis of several malignant tumors including colorectal cancer (CRC). The molecular mechanism underlying CRC angiogenesis has not been fully elucidated. Emerging evidence indicates that secreted microRNAs (miRNAs) may mediate the intercellular communication between tumor cells and neighboring endothelial cells to regulate tumor angiogenesis. In addition, exosomes have been shown to carry and deliver miRNAs to regulate angiogenesis. miRNA N-72 is a novel miRNA that plays a regulatory role in the EGF-induced migration of human amnion mesenchymal stem cells. However, the relation between miRNA N-72 and cancer remains unclear. We here found that CRC cells could secrete miRNA N-72. A high miRNA N-72 level was detected in the serum of CRC patients and the cultured CRC cells. Moreover, the CRC cell-secreted miRNA N-72 could promote the migration, tubulogenesis, and permeability of endothelial cells. In addition, the mouse xenograft model was used to verify the facilitating effects of miRNA N-72 on CRC growth, angiogenesis, and metastasis in vivo. Further mechanism analysis revealed that CRC cell-secreted miRNA N-72 could be delivered into endothelial cells via exosomes, which then inhibited cell junctions of endothelial cells by targeting CLDN18 and consequently promoted angiogenesis. Our findings reveal a novel mechanism of CRC angiogenesis and highlight the potential of secreted miRNA N-72 as a therapeutic target and a biomarker for CRC.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE