Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
1.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-38767492

RÉSUMÉ

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

2.
Regen Ther ; 27: 365-380, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38694448

RÉSUMÉ

Brachial plexus injury (BPI) with motor neurons (MNs) damage still remain poor recovery in preclinical research and clinical therapy, while cell-based therapy approaches emerged as novel strategies. Previous work of rat skin precursor-derived Schwann cells (SKP-SCs) provided substantial foundation for repairing peripheral nerve injury (PNI). Given that, our present work focused on exploring the repair efficacy and possible mechanisms of SKP-SCs implantation on rat BPI combined with neurorrhaphy post-neurotomy. Results indicated the significant locomotive and sensory function recovery, with improved morphological remodeling of regenerated nerves and angiogenesis, as well as amelioration of target muscles atrophy and motor endplate degeneration. Besides, MNs could restore from oxygen-glucose-deprivation (OGD) injury upon SKP-SCs-sourced secretome treatment, implying the underlying paracrine mechanisms. Moreover, rat cytokine array assay detected 67 cytokines from SKP-SC-secretome, and bioinformatic analyses of screened 32 cytokines presented multiple functional clusters covering diverse cell types, including inflammatory cells, Schwann cells, vascular endothelial cells (VECs), neurons, and SKP-SCs themselves, relating distinct biological processes to nerve regeneration. Especially, a panel of hypoxia-responsive cytokines (HRCK), can participate into multicellular biological process regulation for permissive regeneration milieu, which underscored the benefits of SKP-SCs and sourced secretome, facilitating the chorus of nerve regenerative microenvironment. Furthermore, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor-A (VEGF-A) were outstanding cytokines involved with nerve regenerative microenvironment regulating, with significantly elevated mRNA expression level in hypoxia-responsive SKP-SCs. Altogether, through recapitulating the implanted SKP-SCs and derived secretome as niche sensor and paracrine transmitters respectively, HRCK would be further excavated as molecular underpinning of the neural recuperative mechanizations for efficient cell therapy; meanwhile, the analysis paradigm in this study validated and anticipated the actions and mechanisms of SKP-SCs on traumatic BPI repair, and was beneficial to identify promising bioactive molecule cocktail and signaling targets for cell-free therapy strategy on neural repair and regeneration.

3.
Clin Nutr ; 42(10): 1875-1888, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37625317

RÉSUMÉ

BACKGROUND & AIMS: Exposure to a range of elements, air pollution, and specific dietary components in pregnancy has variously been associated with gestational diabetes mellitus (GDM) risk or infant neurodevelopmental problems. We measured a range of pregnancy exposures in maternal hair and/or infant cord serum and tested their relationship to GDM and infant neurodevelopment. METHODS: A total of 843 pregnant women (GDM = 224, Non-GDM = 619) were selected from the Complex Lipids in Mothers and Babies cohort study. Forty-eight elements in hair and cord serum were quantified using inductively coupled plasma-mass spectrometry analysis. Binary logistic regression was used to estimate the associations between hair element concentrations and GDM risk, while multiple linear regression was performed to analyze the relationship between hair/cord serum elements and air pollutants, diet exposures, and Bayley Scales of infant neurodevelopment at 12 months of age. RESULTS: After adjusting for maternal age, BMI, and primiparity, we observed that fourteen elements in maternal hair were associated with a significantly increased risk of GDM, particularly Ta (OR = 9.49, 95% CI: 6.71, 13.42), Re (OR = 5.21, 95% CI: 3.84, 7.07), and Se (OR = 5.37, 95% CI: 3.48, 8.28). In the adjusted linear regression model, three elements (Rb, Er, and Tm) in maternal hair and infant cord serum were negatively associated with Mental Development Index scores. For dietary exposures, elements were positively associated with noodles (Nb), sweetened beverages (Rb), poultry (Cs), oils and condiments (Ca), and other seafood (Gd). In addition, air pollutants PM2.5 (LUR) and PM10 were negatively associated with Ta and Re in maternal hair. CONCLUSIONS: Our findings highlight the potential influence of maternal element exposure on GDM risk and infant neurodevelopment. We identified links between levels of these elements in both maternal hair and infant cord serum related to air pollutants and dietary factors.


Sujet(s)
Polluants atmosphériques , Pollution de l'air , Diabète gestationnel , Grossesse , Nourrisson , Femelle , Humains , Diabète gestationnel/épidémiologie , Études de cohortes , Sang foetal/composition chimique , Pollution de l'air/effets indésirables , Polluants atmosphériques/analyse , Consommation alimentaire
4.
J Neuroimmune Pharmacol ; 16(2): 306-317, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-32291602

RÉSUMÉ

The macrophage scavenger receptor 1 (MSR1)-induced resolution of neuroinflammation may be a novel therapeutic strategy for ischemic stroke. Our previous study showed that the neuroprotective and anti-inflammatory effects of phthalide are associated with the inhibition of the post-ischemic damage-associated molecular pattern (DAMP)/Toll-like receptor 4 (TLR4) pathway. This study investigated the effects of the phthalide derivative CD21 on ischemic brain injury and the mechanism underlying MSR1-induced resolution of neuroinflammation. Using a rat model of 2 h transient middle cerebral artery occlusion (MCAO), MSR1-induced peroxiredoxin1 (PRX1) clearance in RAW264.7 macrophages were investigated. We show here that CD21 significantly ameliorated infarct volumes and neurological deficits in a dose-dependent manner with a ≥ 12 h therapeutic time window. Moreover, administration of 5 mg/kg/day CD21 over 24 h significantly reduced pathological damages, with associated inhibition of PRX1 expression, reduced TLR4/nuclear factor-κB activation and the suppression of the inflammatory response in MCAO rats. Furthermore, the expression of MAFB/MSR1 in the ischemic brain was elevated and the phagocytosis of PRX1 in CD68-positive macrophages isolated from the ischemic brain was enhanced. Further in vitro studies show that CD21 (20 µM) strongly enhanced the Msr1 mRNA and MSR1 protein levers in RAW264.7 cells and PRX1 internalization in cellular lysosomes, which were significantly reversed by N-acetylcysteine treatment. These results suggest that CD21 may exert neuroprotective and anti-inflammatory effects with a wide time window for the treatment of ischemic stroke. The anti-stroke effects of CD21 appear to be mediated partially via the induction of MSR1-promoted DAMP (PRX1) clearance, TLR4/nuclear factor-κB pathway inhibition, and the resolution of inflammation. Graphical Abstract The neuroprotective action of CD21 was associated with the resolution of neuroinflammation through enhancement of the MAFB-MSR1 pathway that leads to DAMP (PRX1) phagocytosis and TLR4 pathway inhibition. Red solid arrows represent promotion, red dotted arrow represents the positive correlation, green arrows represent inhibition.


Sujet(s)
Benzofuranes/pharmacologie , Infarctus du territoire de l'artère cérébrale moyenne/métabolisme , Neuroprotecteurs/pharmacologie , Peroxirédoxines/métabolisme , Récepteurs éboueurs de classe A/métabolisme , Alarmines/métabolisme , Animaux , Mâle , Souris , Cellules RAW 264.7 , Rats , Rat Wistar , Transduction du signal/physiologie , Récepteur de type Toll-4/métabolisme
5.
Curr Med Sci ; 39(5): 685-689, 2019 Oct.
Article de Anglais | MEDLINE | ID: mdl-31612383

RÉSUMÉ

B cells are a heterogeneous population, which have distinct functions of antigen presentation, activating T cells, and secreting antibodies, cytokines as well as protease. It is supposed that the balance among these B cells subpopulation (resting B cells, activated B cells, Bregs, and other differentiated B cells) will determine the ultimate role of B cells in tumor immunity. There has been increasing evidence supporting opposite roles of B cells in tumor immunity, though there are no general acceptable phenotypes for them. Recent years, a new designated subset of B cells identified as Bregs has emerged from immunosuppressive and/or regulatory functions in tumor immune responses. Therefore, transferring activated B cells would be possible to become a promising strategy against tumor via conquering the immunosuppressive status of B cells in future. Understanding the potential mechanism of double-edge role of B cells will help researchers utilize activated B cells to improve their anti-tumor response. Moreover, the molecular pathways related to B cell differentiation are involved in its tumor-promoting effect, such as NF-κB, STAT3, BTK. So, we review the molecular and signaling pathway mechanisms of B cells involved in both tumor-promoting and tumor-suppressive immunity, in order to help researchers optimize B cells to fight cancer better.


Sujet(s)
Sous-populations de lymphocytes B/immunologie , Régulation de l'expression des gènes tumoraux/immunologie , Facteur de transcription NF-kappa B/immunologie , Tumeurs/immunologie , Échappement de la tumeur à la surveillance immunitaire/génétique , Agammaglobulinaemia tyrosine kinase/génétique , Agammaglobulinaemia tyrosine kinase/immunologie , Animaux , Sous-populations de lymphocytes B/classification , Sous-populations de lymphocytes B/anatomopathologie , Différenciation cellulaire , Humains , Immunophénotypage , Interleukine-10/génétique , Interleukine-10/immunologie , Activation des lymphocytes , Souris , Facteur de transcription NF-kappa B/génétique , Tumeurs/génétique , Tumeurs/anatomopathologie , Facteur de transcription STAT-3/génétique , Facteur de transcription STAT-3/immunologie , Transduction du signal , Facteur de croissance transformant bêta/génétique , Facteur de croissance transformant bêta/immunologie
6.
Int Immunopharmacol ; 75: 105821, 2019 Oct.
Article de Anglais | MEDLINE | ID: mdl-31437787

RÉSUMÉ

Mounting evidence has demonstrated that acute pancreatitis (AP) is one of the causes of multiple organ damage. NADPH (nicotinamide adenine dinucleotide phosphate) act as a substrate of NADPH oxidase (NOX) to generate reactive oxygen species (ROS), but the role NADPH oxidase signaling pathway plays in AP-induced acute lung injury remains unclear. Apocynin, an inhibitor of NOX, is highly effective in suppressing the production of ROS. Here, we used rat model of severe acute pancreatitis (SAP) to explore whether the NOX inhibitor apocynin produced protective effects in against SAP-induced lung injury via inhibition of inflammation and oxidation. We observed that apocynin significantly attenuated severe acute pancreatitis-induced increase of NOX2, NOX4 and ROS expressions in lung tissues. In addition, the phosphorylation and degradation of IκBα, and the nuclear localization of NF-κB p65 in SAP-induced lung injury were also inhibited after using apocynin. Simultaneously, down-regulation of NOX suppressed the levels of inflammasome proteins including NLRP3, ASC, pro-Caspase-1 and cleaved-Caspase-1 in the lung. Serum levels of TNF-α, interleukin (IL)-1ß and IL-6 were also reduced. Our findings suggest that beyond anti-oxidative effects, apocynin may also have anti-inflammatory effects by suppressing NLRP3 inflammasome activation and NF-κB signaling in acute pancreatitis. Therefore, apocynin may have therapeutic potential in the treatment of SAP and SAP-induced lung injury.


Sujet(s)
Acétophénones/pharmacologie , Lésion pulmonaire aigüe/immunologie , Anti-inflammatoires/pharmacologie , Inflammasomes/immunologie , Facteur de transcription NF-kappa B/immunologie , Protéine-3 de la famille des NLR contenant un domaine pyrine/immunologie , Pancréatite/immunologie , Acétophénones/usage thérapeutique , Lésion pulmonaire aigüe/traitement médicamenteux , Lésion pulmonaire aigüe/étiologie , Lésion pulmonaire aigüe/anatomopathologie , Animaux , Anti-inflammatoires/usage thérapeutique , Cytokines/immunologie , Poumon/effets des médicaments et des substances chimiques , Poumon/immunologie , Poumon/anatomopathologie , Mâle , Pancréas/effets des médicaments et des substances chimiques , Pancréas/immunologie , Pancréas/anatomopathologie , Pancréatite/complications , Pancréatite/traitement médicamenteux , Pancréatite/anatomopathologie , Rat Wistar , Espèces réactives de l'oxygène/immunologie , Transduction du signal/effets des médicaments et des substances chimiques
7.
Oncotarget ; 8(53): 90979-90995, 2017 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-29207618

RÉSUMÉ

The inhibition of extracellular inflammatory peroxiredoxin (Prx) signaling appears to be a potential therapeutic strategy for neuroinflammatory injury after acute ischemic stroke. Gastrodin (Gas) is a phenolic glycoside that is used for the treatment of cerebral ischemia, accompanied by regulation of the autoimmune inflammatory response. The present study investigated the neuroprotective effects of Gas and its derivative, Gas-D, with a focus on the potential mechanism associated with inflammatory Prx-Toll-like receptor 4 (TLR4) signaling. Gas-D significantly inhibited Prx1-, Prx2-, and Prx4-induced inflammatory responses in RAW264.7 macrophages and H2O2-mediated oxidative injury in SH-SY5Y nerve cells. In rats, intraperitoneal Gas-D administration 10 h after reperfusion following 2-h middle cerebral artery occlusion (MCAO) ameliorated neurological deficits, brain infarction, and neuropathological alterations, including neuron loss, astrocyte and microglia/macrophage activation, T-lymphocyte invasion, and lipid peroxidation. Delayed Gas-D treatment significantly inhibited postischemic Prx1/2/4 expression and spillage, TLR4 signaling activation, and inflammatory mediator production. In contrast, Gas had no significant effects in either cell model or in MCAO rats under the same conditions. These results indicate that Gas-D may be a drug candidate with an extended therapeutic time window that blocks inflammatory responses and attenuates the expression and secretome of inflammatory Prxs in acute ischemic stroke.

8.
Int J Food Sci ; 2013: 909140, 2013.
Article de Anglais | MEDLINE | ID: mdl-26904614

RÉSUMÉ

Peanut allergy affects 1-2% of the world's population. It is dangerous, and usually lifelong, and it greatly decreases the life quality of peanut-allergic individuals and their families. In a word, peanut allergy has become a major health concern worldwide. Thirteen peanut allergens are identified, and they are briefly introduced in this paper. Although there is no feasible solution to peanut allergy at present, many methods have shown great promise. This paper reviews methods of reducing peanut allergenicity, including physical methods (heat and pressure, PUV), chemical methods (tannic acid and magnetic beads), and biological methods (conventional breeding, irradiation breeding, genetic engineering, enzymatic treatment, and fermentation).

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE