Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.280
Filtrer
1.
Front Physiol ; 15: 1409304, 2024.
Article de Anglais | MEDLINE | ID: mdl-39113935

RÉSUMÉ

Post-stroke gait asymmetry leads to inefficient gait and a higher fall risk, often causing limited home and community ambulation. Two types of treadmills are typically used for training focused on symmetry: split-belt and single belt treadmills, but there is no consensus on which treadmill is superior to improve gait symmetry in individuals with stroke. To comprehensively determine which intervention is superior, we considered multiple spatial and temporal gait parameters (step length, stride time, swing time, and stance time) and their symmetries. Ten individuals with stroke underwent a single session of split-belt treadmill training and single belt treadmill training on separate days. The changes in step length, stride time, swing time, stance time and their respective symmetries were compared to investigate which training improves both spatiotemporal gait parameters and symmetries immediately after the intervention and after 5 min of rest. Both types of treadmill training immediately increased gait velocity (0.08 m/s faster) and shorter step length (4.15 cm longer). However, split-belt treadmill training was more effective at improving step length symmetry (improved by 27.3%) without sacrificing gait velocity or step length. However, this step length symmetry effect diminished after a 5-min rest period. Split-belt treadmill training may have some advantages over single belt treadmill training, when targeting step length symmetry. Future research should focus on comparing the long-term effects of these two types of training and examining the duration of the observed effects to provide clinically applicable information.

2.
Front Pharmacol ; 15: 1423060, 2024.
Article de Anglais | MEDLINE | ID: mdl-39114364

RÉSUMÉ

Alzheimer's disease (AD) has an increasing prevalence, complicated pathogenesis and no effective cure. Emerging evidences show that flavonoid compounds such as xanthohumol (Xn) could play an important role as a dietary supplement or traditional Chinese herbal medicine in the management of diseases such as AD. This study aims to analyze the target molecules of Xn in the prevention and treatment of AD, and its potential mechanism from the perspective of metabolites. APP/PS1 mice 2- and 6-months old were treated with Xn for 3 months, respectively, the younger animals to test for AD-like brain disease prevention and the older animals to address therapeutic effects on the disease. Memantine (Mem) was selected as positive control. Behavioral tests were performed to assess the course of cognitive function. Urine samples were collected and analyzed by high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) coupled with online Compound Discoverer software. Morris Water Maze (MWM) tests showed that Xn, like Mem, had a therapeutic but not a preventive effect on cognitive impairment. The expression levels of urinary metabolites appeared to show an opposite trend at different stages of Xn treatment, downregulated in the prevention phase while upregulated in the therapy phase. In addition, the metabolic mechanisms of Xn during preventive treatment were also different from that during therapeutic treatment. The signaling pathways metabolites nordiazepam and genistein were specifically regulated by Xn but not by Mem in the disease prevention stage. The signaling pathway metabolite ascorbic acid was specifically regulated by Xn in the therapeutic stage. In conclusion, dietary treatment with Xn altered the urinary metabolite profile at different stages of administration in APP/PS1 mice. The identified potential endogenous metabolic biomarkers and signal pathways open new avenues to investigate the pathogenesis and treatment of AD.

3.
Ecotoxicol Environ Saf ; 283: 116837, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39121655

RÉSUMÉ

The association between metal mixtures and kidney function has been reported. However, reports on the mechanism of metal toxicity were limited. Oxidative stress was reported as a possible cause. This study aimed to determine the association between of kidney function and metals, such as arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), lead (Pb), selenium (Se), and zinc (Zn), and to explore the possible mediating role of tumor necrosis factor alpha (TNF-α) between metal toxicity and kidney function. In this study, we recruited 421 adults from a health examination. The concentration of blood metals was analyzed using inductively coupled plasma mass spectrometry. We used linear regression models to assess the association between metals and TNF-α. Then, mediation analysis was applied to investigate the relationship between metal exposure, TNF-α, and kidney function. In univariate linear regression, blood As, Cd, Co, Cu, Pb, and Zn levels significantly increased TNF-α and decreased kidney function. Higher blood As and Pb levels significantly increased TNF-α in multivariable linear regressions after adjusting for covariates. We found that blood levels of As (coefficients = -0.021, p = 0.011), Pb (coefficients = -0.060, p < 0.001), and Zn (coefficients = -0.230, p < 0.001) showed a significant negative association with eGFR in the multiple-metal model. Furthermore, mediation analysis showed that TNF-α mediated 41.7 %, 38.8 %, and 20.8 % of blood Cd, As and Pb, respectively. Among the essential elements, TNF-α mediated 24.5 %, 21.5 % and 19.9 % in the effects of blood Co, Cu, and Zn on kidney function, respectively. TNF-α, acting as a mediator, accounted for 20.1 % of the contribution between the WQS score of metal mixtures and the eGFR (p < 0.001). This study suggested that TNF-α may be a persuasive pathway mediating the association between metals and kidney function. Inflammation and kidney injury could be the underlying mechanisms of metal exposure. However, there is still a need to clarify the biochemical mechanism in follow-up studies.

4.
Obes Res Clin Pract ; 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39127601

RÉSUMÉ

BACKGROUND: Pubertal timing is modulated by complex interactions between the pituitary and gonadal sex steroid hormones. Evidence indicates that sphingolipids are involved in the biosynthesis of steroid hormones at multiple levels. METHOD: This study recruited adolescent female patients from pubertal and pediatric endocrine clinics in Northern and Southern Taiwan from the Taiwan Puberty Longitudinal Study. A total of 112 plasma samples (22 healthy control, 29 peripheral precocious puberty (PPP), and 61 CPP samples) were collected. We extracted lipids from the plasma samples using the modified Folch method. The un-targeted ultrahigh-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was employed for the lipid analysis. RESULTS: We identified sphingolipid-linked metabolites, including Cer(18:0/15:0), Cer(18:1/16:0), and Cer(18:1/26:0) as candidate biomarkers for distinguishing girls with CPP from the control group by using an excellent discrimination model (AUC = 0.964). Moreover, Cer(18:0/22:0) and Cer(d18:0/18:1) were identified as potential biomarkers of PPP, with an AUC value of 0.938. Furthermore, CerP(18:1/18:0) was identified as the sole candidate biomarker capable of differentiating CPP from PPP. CONCLUSIONS: The biomarkers identified in this study can facilitate the accurate detection of CPP in girls, provide insights into lipid-linked pathophysiology, and present a novel method of monitoring the progression of this disorder.

5.
BJOG ; 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39099410

RÉSUMÉ

OBJECTIVE: To analyse the global burden, trends and cross-country inequalities of female breast and gynaecologic cancers (FeBGCs). DESIGN: Population-Based Study. SETTING: Data sourced from the Global Burden of Disease Study 2019. POPULATION: Individuals diagnosed with FeBGCs. METHODS: Age-standardised mortality rates (ASMRs), age-standardised Disability-Adjusted Life Years (DALYs) rates (ASDRs) and their 95% uncertainty interval (UI) described the burden. Estimated annual percentage changes (EAPCs) and their confidence interval (CI) of age-standardised rates (ASRs) illustrated trends. Social inequalities were quantified using the Slope Index of Inequality (SII) and Concentration Index. MAIN OUTCOME MEASURES: The main outcome measures were the burden of FeBGCs and the trends in its inequalities over time. RESULTS: In 2019, the ASDRs per 100 000 females were as follows: breast cancer: 473.83 (95% UI: 437.30-510.51), cervical cancer: 210.64 (95% UI: 177.67-234.85), ovarian cancer: 124.68 (95% UI: 109.13-138.67) and uterine cancer: 210.64 (95% UI: 177.67-234.85). The trends per year from 1990 to 2019 were expressed as EAPCs of ASDRs and these: for Breast cancer: -0.51 (95% CI: -0.57 to -0.45); Cervical cancer: -0.95 (95% CI: -0.99 to -0.89); Ovarian cancer: -0.08 (95% CI: -0.12 to -0.04); and Uterine cancer: -0.84 (95% CI: -0.93 to -0.75). In the Social Inequalities Analysis (1990-2019) the SII changed from 689.26 to 607.08 for Breast, from -226.66 to -239.92 for cervical, from 222.45 to 228.83 for ovarian and from 74.61 to 103.58 for uterine cancer. The concentration index values ranged from 0.2 to 0.4. CONCLUSIONS: The burden of FeBGCs worldwide showed a downward trend from 1990 to 2019. Countries or regions with higher Socio-demographic Index (SDI) bear a higher DALYs burden of breast, ovarian and uterine cancers, while those with lower SDI bear a heavier burden of cervical cancer. These inequalities increased over time.

6.
Small ; : e2403869, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39101346

RÉSUMÉ

Cancer metastasis poses significant challenges in current clinical therapy. Osthole (OST) has demonstrated efficacy in treating cervical cancer and inhibiting metastasis. Despite these positive results, its limited solubility, poor oral absorption, low bioavailability, and photosensitivity hinder its clinical application. To address this limitation, a glutathione (GSH)-responded nano-herb delivery system (HA/MOS@OST&L-Arg nanoparticles, HMOA NPs) is devised for the targeted delivery of OST with cascade-activatable nitric oxide (NO) release. The HMOA NPs system is engineered utilizing enhanced permeability and retention (EPR) effects and active targeting mediated by hyaluronic acid (HA) binding to glycoprotein CD44. The cargoes, including OST and L-Arginine (L-Arg), are released rapidly due to the degradation of GSH-responsive mesoporous organic silica (MOS). Then abundant reactive oxygen species (ROS) are produced from OST in the presence of high concentrations of NAD(P)H quinone oxidoreductase 1 (NQO1), resulting in the generation of NO and subsequently highly toxic peroxynitrite (ONOO-) by catalyzing guanidine groups of L-Arg. These ROS, NO, and ONOO- molecules have a direct impact on mitochondrial function by reducing mitochondrial membrane potential and inhibiting adenosine triphosphate (ATP) production, thereby promoting increased apoptosis and inhibiting metastasis. Overall, the results indicated that HMOA NPs has great potential as a promising alternative for the clinical treatment of cervical cancer.

7.
Opt Lett ; 49(15): 4170-4173, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39090886

RÉSUMÉ

Mask-based lensless imaging systems suffer from model mismatch and defocus. In this Letter, we propose a model-driven CycleGAN, MDGAN, to reconstruct objects within a long distance. MDGAN includes two translation cycles for objects and measurements respectively, each consisting of a forward propagation and a backward reconstruction module. The backward module resembles the Wiener-U-Net, and the forward module consists of the estimated image formation model of a Fresnel zone aperture camera (FZACam), followed by CNN to compensate for the model mismatch. By imposing cycle consistency, the backward module can adaptively match the actual depth-varying imaging process. We demonstrate that MDGAN based on either a simulated or calibrated imaging model produces a higher-quality image compared to existing methods. Thus, it can be applied to other mask-based systems.

8.
Cardiovasc Diabetol ; 23(1): 283, 2024 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-39097703

RÉSUMÉ

BACKGROUND: Heart failure (HF) with improved ejection fraction (EF, HFimpEF) is a distinct HF subtype, characterized by left ventricular (LV) reverse remodeling and myocardial functional recovery. Multiple cardiometabolic factors are implicated in this process. Epicardial adipose tissue (EAT), emerging as an endocrine and paracrine organ, contributes to the onset and progression of HF. However, the relation between EAT and the incidence of HFimpEF is still unclear. METHODS: A total of 203 hospitalized HF patients with reduced EF (HFrEF, LVEF ≤ 40%) who underwent coronary CT angiography (CCTA) during index hospitalization were consecutively enrolled between November 2011 and December 2022. Routine follow-up and repeat echocardiograms were performed. The incidence of HFimpEF was defined as (1) an absolute LVEF improvement ≥ 10% and (2) a second LVEF > 40% (at least 3 months apart). EAT volume and density were semiautomatically quantified on non-enhanced series of CCTA scans. RESULTS: During a median follow-up of 8.6 (4.9 ~ 13.3) months, 104 (51.2%) patients developed HFimpEF. Compared with HFrEF patients, HFimpEF patients had lower EAT volume (115.36 [IQR 87.08 ~ 154.78] mL vs. 169.67 [IQR 137.22 ~ 218.89] mL, P < 0.001) and higher EAT density (-74.92 ± 6.84 HU vs. -78.76 ± 6.28 HU, P < 0.001). Multivariate analysis showed lower EAT volume (OR: 0.885 [95%CI 0.822 ~ 0.947]) and higher density (OR: 1.845 [95%CI 1.023 ~ 3.437]) were both independently associated with the incidence of HFimpEF. Subgroup analysis revealed that the association between EAT properties and HFimpEF was not modified by HF etiology. CONCLUSIONS: This study reveals that lower EAT volume and higher EAT density are associated with development of HFimpEF. Therapies targeted at reducing EAT quantity and improving its quality might provide favorable effects on myocardial recovery in HF patients.


Sujet(s)
Adiposité , Angiographie par tomodensitométrie , , Défaillance cardiaque , Péricarde , Récupération fonctionnelle , Débit systolique , Fonction ventriculaire gauche , Sujet âgé , Femelle , Humains , Mâle , Adulte d'âge moyen , Coronarographie , /imagerie diagnostique , /physiopathologie , Défaillance cardiaque/physiopathologie , Défaillance cardiaque/imagerie diagnostique , Péricarde/imagerie diagnostique , Péricarde/physiopathologie , Valeur prédictive des tests , Pronostic , Études rétrospectives , Facteurs de risque , Facteurs temps , Remodelage ventriculaire
9.
Comput Struct Biotechnol J ; 23: 2861-2871, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39100804

RÉSUMÉ

Interaction simulation for co-culture systems is important for optimizing culture conditions and improving yields. For industrial production, the environment significantly affects the spatial-temporal microbial interactions. However, the current research on polymicrobial interactions mainly focuses on interaction patterns among strains, and neglects the environment influence. Based on the resource competition relationship between two strains, this research set up the modules of cellular physicochemical properties, nutrient uptake and metabolite release, cellular survival, cell swimming and substrate diffusion, and investigated the spatial-temporal strain-environment interactions through module coupling and data mining. Furthermore, in an Escherichia coli-Saccharomyces cerevisiae consortium, the total net reproduction rate decreased as glucose was consumed. E. coli gradually dominated favorable positions due to its higher glucose utilization capacity, reaching 100 % abundance with a competitive strength of 0.86 for glucose. Conversely, S. cerevisiae decreased to 0 % abundance with a competitive strength of 0.14. The simulation results of environment influence on strain competitiveness showed that inoculation ratio and dissolved oxygen strongly influenced strain competitiveness. Specifically, strain competitiveness increased with higher inoculation ratio, whereas E. coli competitiveness increased as dissolved oxygen increased, in contrast to S. cerevisiae. On the other hand, substrate diffusion condition, micronutrients and toxins had minimal influence on strain competitiveness. This method offers a straightforward procedure without featured downscaling and provides novel insights into polymicrobial interaction simulation.

10.
Molecules ; 29(15)2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39125024

RÉSUMÉ

Dimeric prodrugs have been investigated intensely as carrier-free drug self-delivery systems (DSDSs) in recent decades, and their stimuli-responsive drug release has usually been controlled by the conjugations between the drug molecules, including the stimuli (pH or redox) and responsive sensitivity. Here, an acid-triggered dimeric prodrug of doxorubicin (DOX) was synthesized by conjugating two DOX molecules with an acid-labile ketal linker. It possessed high drug content near the pure drug, while the premature drug leakage in blood circulation was efficiently suppressed. Furthermore, its aggregation structures were controlled by fabricating nanomedicines via different approaches, such as fast precipitation and slow self-assembly, to regulate the drug release performance. Such findings are expected to enable better anti-tumor efficacy with the desired drug release rate, beyond the molecular structure of the dimeric prodrug.


Sujet(s)
Doxorubicine , Systèmes de délivrance de médicaments , Libération de médicament , Promédicaments , Promédicaments/composition chimique , Promédicaments/pharmacologie , Doxorubicine/composition chimique , Doxorubicine/pharmacologie , Humains , Concentration en ions d'hydrogène , Vecteurs de médicaments/composition chimique , Structure moléculaire
11.
Int Immunopharmacol ; 140: 112852, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39106715

RÉSUMÉ

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a major 21st-century epidemic. T2DM elevates the risk of myocardial infarction and heart failure while also reducinges survival rates. Recently Ferroptosis has been found to be involved in the development of various cardiovascular diseases. TRPV1 is also a potential therapeutic target for cardioprotection. This study explores whether capsaicin, a transient receptor potential vanilloid receptor 1 (TRPV1) agonist, can prevent diabetic myocardial infarction-induced injury by inhibiting ferroptosis. METHODS: T2DM model was induced by high-fat diet (HFD) feeding combined with streptozocin (STZ) injections, and the diabetic mice were treated with capsaicin(0.015 %) in their food. Myocardial infarction model was established as well. Mouse' general characteristics, cardiac function, and morphological histology were observed and analyzed. RNA-seq was used to investigate the possible mechanism of injury in AC16 cardiomyocytes cultured with high glucose and hypoxia. In addition, the potential mechanism of capsaicin against injury was further investigated in AC16 cardiomyocytes cultured with high glucose and hypoxia. RESULTS: The RNA-seq analysis revealed that ferroptosis was associated with cell death induced by high-glucose in combination with hypoxia, and CAP treatment could effectively inhibit ferroptosis to enhance cell survival. In vivo studies demonstrated that CAP treatment significantly improved post-MI cardiac function, attenuated myocardial inflammation and fibrosis. Furthermore, it was observed that CAP reduced ferroptosis levels by activating TRPV1 in the heart, upregulating Nrf2 expression, promoting Nrf2 nuclear translocation and increasing the expression of the Nrf2 downstream molecule Heme oxygenase-1 (HMOX1). CONCLUSIONS: Dietary capsaicin may inhibit cardiomyocyte ferroptosis through activation of myocardial TRPV1 and Nrf2/HMOX1 signaling pathway, which in turn exerts a protective effect on the myocardium after myocardial infarction in type 2 diabetic mice.

12.
Sci Rep ; 14(1): 16051, 2024 07 11.
Article de Anglais | MEDLINE | ID: mdl-38992083

RÉSUMÉ

RNA-binding proteins (RBPs) are a class of proteins that primarily function by interacting with different types of RNAs and play a critical role in regulating the transcription and translation of cancer-related genes. However, their role in the progression of hepatocellular carcinoma (HCC) remains unclear. In this study, we analyzed RNA sequencing data and the corresponding clinical information of patients with HCC to screen for prognostic RBPs. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) was identified as an independent prognostic factor for liver cancer. It is upregulated in HCC and is associated with a poor prognosis. Elevated IGF2BP3 expression was validated via immunohistochemical analysis using a tissue microarray of patients with HCC. IGF2BP3 knockdown inhibited the proliferation of Hep3B and HepG2 cells, whereas IGF2BP3 overexpression promoted the expansion of HuH-7 and MHCC97H cells. Mechanistically, IGF2BP3 modulates cell proliferation by regulating E2F1 expression. DNA hypomethylation of the IGF2BP3 gene may increase the expression of IGF2BP3, thereby enhancing cell proliferation in HCC. Therefore, IGF2BP3 may act as a novel prognostic biomarker and a potential therapeutic target for HCC.


Sujet(s)
Carcinome hépatocellulaire , Prolifération cellulaire , Méthylation de l'ADN , Facteur de transcription E2F1 , Épigenèse génétique , Régulation de l'expression des gènes tumoraux , Tumeurs du foie , Protéines de liaison à l'ARN , Régulation positive , Humains , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/métabolisme , Tumeurs du foie/génétique , Tumeurs du foie/anatomopathologie , Tumeurs du foie/métabolisme , Prolifération cellulaire/génétique , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , Facteur de transcription E2F1/métabolisme , Facteur de transcription E2F1/génétique , Mâle , Régulation positive/génétique , Femelle , Pronostic , Lignée cellulaire tumorale , Adulte d'âge moyen , Cellules HepG2 , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme
13.
J Nanobiotechnology ; 22(1): 399, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38970101

RÉSUMÉ

Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.


Sujet(s)
Axones , Macrophages , Nanofibres , Régénération nerveuse , Traumatismes de la moelle épinière , Animaux , Axones/métabolisme , Nanofibres/composition chimique , Régénération nerveuse/effets des médicaments et des substances chimiques , Souris , Macrophages/effets des médicaments et des substances chimiques , Macrophages/métabolisme , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Rats , Structures d'échafaudage tissulaires/composition chimique , Nanoparticules/composition chimique , Rat Sprague-Dawley , Peptide relié au gène de la calcitonine/métabolisme , Femelle , Souris de lignée C57BL
14.
Medicine (Baltimore) ; 103(27): e38707, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38968538

RÉSUMÉ

BACKGROUND: Jin's three needle (JTN) is a commonly utilized treatment for ischemic stroke in China. Mirror therapy (MT) is also gradually transitioning from treating limb discomfort to restoring motor function in the damaged limb. Investigations into the 2 treatments' mechanisms of action are still ongoing. We used functional magnetic resonance imaging (fMRI) technique in this study to examine the effects of JTN combined with mirror therapy MT on brain function in patients with upper limb dysfunction in ischemic stroke, as well as potential central mechanisms. The goal was to provide a solid evidence-based medical basis to support the continued use of JTN combination MT. METHODS: This study will be a single-blind, randomized, and controlled experiment. Randomization was used to assign 20 patients who met the study's eligibility requirements to the JTN + MT treatment group or the JTN control group. Each intervention will last for 4 weeks, with 6 days of treatment per week. The JTN acupuncture points are 3 temporal acupuncture points on the opposite side of the wounded limb, 3 hand acupuncture points on the injured upper limb, 3 shoulder acupuncture points, Renzhong and Baihui, The (JTN + MT) group simultaneously takes MT for 30 minutes. fMRI of the brain using BOLD and T1-weighted images was done both before and after therapy. Brain areas exhibiting changes in regional homogeneity during the pre and posttreatment periods were analyzed. RESULTS: By the end of the treatment course, Jin three-needle therapy plus MT activated more relevant brain functional regions and increased cerebral blood oxygen perfusion than Jin three-needle therapy alone (P <.05). CONCLUSION: In patients with upper limb impairment following an ischemic stroke, JTN with MT may improve brain function reconstruction in the relevant areas.


Sujet(s)
Thérapie par acupuncture , Accident vasculaire cérébral ischémique , Imagerie par résonance magnétique , Membre supérieur , Humains , Membre supérieur/physiopathologie , Méthode en simple aveugle , Accident vasculaire cérébral ischémique/physiopathologie , Accident vasculaire cérébral ischémique/thérapie , Accident vasculaire cérébral ischémique/imagerie diagnostique , Thérapie par acupuncture/méthodes , Imagerie par résonance magnétique/méthodes , Mâle , Femelle , Adulte d'âge moyen , Encéphale/imagerie diagnostique , Encéphale/physiopathologie , Réadaptation après un accident vasculaire cérébral/méthodes , Réadaptation après un accident vasculaire cérébral/instrumentation , Sujet âgé , Adulte , Aiguilles , Résultat thérapeutique
15.
Int J Antimicrob Agents ; : 107268, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38972552

RÉSUMÉ

The global public health threat of bacterial antibiotic resistance continues to escalate and necessitates the implementation of urgent measures to expand our arsenal of antimicrobial drugs. In this study, we identified a benzoxaborane compound, namely 5-chloro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2178), which can effectively inhibit the catalytic activity of the Klebsiella pneumoniae carbapenemase (KPC-2) enzyme. The efficacy of AN2718 as an inhibitor for the KPC-2 enzyme was verified through various assays, including enzyme activity assays and isothermal titration calorimetry. Results of multiple biochemical assays, minimum inhibitory concentration assay, and time-killing assay also showed that binding of AN2718 to KPC-2 enabled the restoration of the bactericidal effect of meropenem. The survival rate of mice infected by carbapenem-resistant, high-virulence strains increased significantly upon treatment with this agent. Most importantly, the meropenem and AN2718 combination is effective on KPC-2 mutations such as KPC-33 that were clinically evolved and exhibited resistance to ceftazidime-avibactam upon the clinical uses of this drug for a couple of years. Comprehensive safety tests both in vitro and in vivo, such as cytotoxicity, haemolytic activity, and cytochrome P450 inhibition assays demonstrated that AN2718 was safe for clinical use. These promising data indicate that AN2718 has a high potential for being approved for the treatment of drug resistant bacterial infections, including those caused by the Ceftazidime-Avibactam resistant strains. To conclude, the compound AN2718 can be regarded as a valuable addition to the current antimicrobial armamentarium and a promising tool to combat antimicrobial resistance.

16.
Res Sq ; 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38978602

RÉSUMÉ

Conducting polymers are of great interest in bioimaging, bio-interfaces, and bioelectronics for their biocompatibility and the unique combination of optical, electrical, and mechanical properties. They are typically prepared outside through traditional organic synthesis and delivered into the biological systems. The ability to call for the polymerization ingredients available inside the living systems to generate conducting polymers in vivo will offer new venues in future biomedical applications. This study is the first report of in vivo synthesis of an n-doped conducting polymer (n-PBDF) within live zebrafish embryos, achieved through whole blood catalyzed polymerization of 3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione (BDF). Prior to this, the efficacy of such a polymerization was rigorously established through a sequence of in vitro experiments involving Hemin, Hemoproteins (Hemoglobin, Myoglobin, and Cytochrome C), red blood cells, and the whole blood. Ultimately, in cellulo formed n-PBDF within cultured primary neurons demonstrated enhanced bio-interfaces and led to more effective light-induced neural activation than the prefabricated polymer. This underscores the potential advantages of synthesizing conducting polymers directly in living systems for biomedical applications.

17.
Drug Metab Dispos ; 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38997155

RÉSUMÉ

P2Y12 receptor inhibitors are commonly used in clinical antiplatelet therapy, typically alongside other medications. Vicagrel, a promising P2Y12 receptor inhibitor, has submitted a new drug marketing application to the U.S. FDA. Its primary metabolites and some metabolic pathways are identical to those of clopidogrel. The aim of this study was to investigate the effects of the thiol methyltransferase inhibitor ({plus minus})-2,3-dichloro-α-methylbenzylamine (DCMB) on the metabolism and pharmacokinetics of vicagrel. In vitro incubation with human and rat liver microsomes revealed that DCMB significantly inhibited the methylation of vicagrel's thiol metabolite M15-1. Rats were orally administered 6 mg/kg [14C]vicagrel (100 µCi/kg) 1 h after peritoneal injection with or without DCMB (80 mg/kg). Compared to the control group, the plasma of DCMB-pretreated rats exhibited C max decrease and T max delay for all vicagrel-related substances, the methylation product of the thiol metabolite (M9-2) and the derivatization product of the active thiol metabolite (MP-M15-2). However, no significant changes in AUC or t 1/2 were observed. DCMB had negligible effect on the total radiological recovery of vicagrel within 72 h, although the rate of vicagrel excretion slowed down within 48 h. DCMB had a negligible impact on the metabolic pathway of vicagrel. Overall, the present study found that DCMB did not significantly affect the total exposure, metabolic pathways, metabolite profiles, or total excretion rates of vicagrel-related metabolites in rats, but led to C max decrease, T max delay, and slower excretion rate within 48 h. Significance Statement This study used LC-MS/MS combined with radiolabeling technology to investigate the effects of the TMT inhibitor DCMB on the absorption, metabolism and excretion of vicagrel in rats. This work helps to better understand the in vivo metabolism of active thiol metabolites of P2Y12 inhibitors such as clopidogrel and vicagrel, etc.

19.
Adv Sci (Weinh) ; : e2405677, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38994890

RÉSUMÉ

Photoacoustic (PA) emitters are emerging ultrasound sources offering high spatial resolution and ease of miniaturization. Thus far, PA emitters rely on electronic transitions of absorbers embedded in an expansion matrix such as polydimethylsiloxane (PDMS). Here, it is shown that mid-infrared vibrational excitation of C─H bonds in a transparent PDMS film can lead to efficient mid-infrared photoacoustic conversion (MIPA). MIPA shows 37.5 times more efficient than the commonly used PA emitters based on carbon nanotubes embedded in PDMS. Successful neural stimulation through MIPA both in a wide field with a size up to a 100 µm radius and in single-cell precision is achieved. Owing to the low heat conductivity of PDMS, less than a 0.5 °C temperature increase is found on the surface of a PDMS film during successful neural stimulation, suggesting a non-thermal mechanism. MIPA emitters allow repetitive wide-field neural stimulation, opening up opportunities for high-throughput screening of mechano-sensitive ion channels and regulators.

20.
Front Public Health ; 12: 1367818, 2024.
Article de Anglais | MEDLINE | ID: mdl-38966706

RÉSUMÉ

Background: The incidence of early-onset colorectal cancer (EOCRC) is increasing globally. This study aims to describe the temporal trends of incidence and explore related risk exposures in early-life at the country level based on the GBD 2019. Methods: Data on the incidence and attributable risk factors of EOCRC were obtained from the GBD 2019. Temporal trends of age-standardized incidence were evaluated by average annual percentage change (AAPC). Early-life exposures were indicated as summary exposure values (SEV) of selected factors, SDI and GDP per capita in previous decades and at ages 0-4, 5-9, 10-14 and 15-19 years. Weighted linear or non-linear regressions were applied to evaluate the ecological aggregate associations of the exposures with incidences of EOCRC. Results: The global age-standardized incidence of EOCRC increased from 3.05 (3.03, 3.07) to 3.85 (3.83, 3.86) per 100,000 during 1990 and 2019. The incidence was higher in countries with high socioeconomic levels, and increased drastically in countries in East Asia and Caribbean, particularly Jamaica, Saudi Arabia and Vietnam. The GDP per capita, SDI, and SEVs of iron deficiency, alcohol use, high body-mass index, and child growth failure in earlier years were more closely related with the incidences of EOCRC in 2019. Exposures at ages 0-4, 5-9, 10-14 and 15-19 years were also associated with the incidences, particularly for the exposures at ages 15-19 years. Conclusion: The global incidence of EOCRC increased during past three decades. The large variations at regional and national level may be related with the distribution of risk exposures in early life.


Sujet(s)
Tumeurs colorectales , Santé mondiale , Humains , Incidence , Tumeurs colorectales/épidémiologie , Adolescent , Enfant , Nourrisson , Enfant d'âge préscolaire , Jeune adulte , Santé mondiale/statistiques et données numériques , Facteurs de risque , Nouveau-né , Femelle , Mâle , Charge mondiale de morbidité/tendances , Âge de début , Adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE