Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.202
Filtrer
1.
Toxicol Appl Pharmacol ; 491: 117064, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39122118

RÉSUMÉ

Propylthiouracil (PTU) and methimazole (MMI), two classical antithyroid agents possess risk of drug-induced liver injury (DILI) with unknown mechanism of action. This study aimed to examine and compare their hepatic toxicity using a quantitative system toxicology approach. The impact of PTU and MMI on hepatocyte survival, oxidative stress, mitochondrial function and bile acid transporters were assessed in vitro. The physiologically based pharmacokinetic (PBPK) models of PTU and MMI were constructed while their risk of DILI was calculated by DILIsym, a quantitative systems toxicology (QST) model by integrating the results from in vitro toxicological studies and PBPK models. The simulated DILI (ALT >2 × ULN) incidence for PTU (300 mg/d) was 21.2%, which was within the range observed in clinical practice. Moreover, a threshold dose of 200 mg/d was predicted with oxidative stress proposed as an important toxic mechanism. However, DILIsym predicted a 0% incidence of hepatoxicity caused by MMI (30 mg/d), suggesting that the toxicity of MMI was not mediated through mechanism incorporated into DILIsym. In conclusion, DILIsym appears to be a practical tool to unveil hepatoxicity mechanism and predict clinical risk of DILI.

3.
Acta Biomater ; 2024 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-39098446

RÉSUMÉ

Diabetic wound treatment continues to be a significant clinical issue due to higher levels of oxidative stress, susceptibility to bacterial infections, and chronic inflammatory responses during healing. We rationally developed and synthesized an ultra-small carbon dots (C-dots) loaded with zinc single-atom nanozyme (Zn/C-dots) with the aim of promoting wounds healing by nanocatalytic treatment, especially targeting its complex pathological microenvironment. Zinc single atoms and C-dots form a dual catalytic system with higher enzymatic activity. Furthermore, the Zn/C-dots nanozyme effectively enters cells, accumulates at mitochondria, and removes excess ROS, protecting cells from oxidative stress damage and limiting the release of pro-inflammatory cytokines, hence reducing inflammation. Zinc can synergistically increase the antibacterial action of C-dots (the effective antibacterial rate of 100 µg/mL Zn/C-dots was above 90 %). Unlike traditional C-dots, Zn/C-dots can cause endothelial cell migration and the formation of new blood vessels. In vitro cytotoxicity, blood compatibility, and in vivo toxicity studies of Zn/C-dots show that they are biocompatible. We subsequently utilized the Zn/C-dots nanozymes to treat diabetic rats' chronic wounds for external use, combining them with ROS-responsive hydrogels to create an antioxidative system (H-Zn/C-dots). The hydrogels anchored the Zn/C-dots nanozymes to the wound, allowing for long-term treatment. The results revealed that H-Zn/C-dots can considerably reduce inflammation, accelerate angiogenesis, collagen deposition, and promote tissue remodeling at the diabetic wound site. After 14 days, the wound area had decreased to approximately 9.19 %, making it a potential treatment. STATEMENT OF SIGNIFICANCE: An ultra-small carbon dot with a zinc single-atom nanozyme was designed and manufactured. Zn/C-dots possess antibacterial, ROS-scavenging, and angiogenesis activities. In vivo, the multifunctional ROS-responsive hydrogel incorporating Zn/C-dots could speed up diabetic wound healing.

4.
Phytomedicine ; 133: 155906, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39089089

RÉSUMÉ

BACKGROUND: Colorectal cancer (CRC) and its chemoresistance pose significant threats to human health. Gegen Qinlian Decoction (GQD) is frequently employed alongside chemotherapy drugs for the treatment of CRC and various intestinal disorders. Despite its widespread use, there is limited research investigating the mechanisms through which GQD reverses chemoresistance. PURPOSE: This study investigated the mechanism by which GQD reverses oxaliplatin (OXA) resistance in CRC. METHODS: A YTH N6-methyladenosine RNA binding protein 1 (YTHDF1)-knockdown OXA-resistant cell line was constructed by lentivirus to clarify YTHDF1-mediated chemoresistance through the regulation of glutaminase 1 (GLS1). The efficacy of GQD in reversing OXA resistance in CRC in vitro was evaluated by Cell Counting Kit-8, western blotting, quantitative real-time polymerase chain reaction, and glutaminase activity assays. In vivo validation was performed by constructing tumor xenografts in nude mice with OXA-resistant cells. In addition, mouse feces were collected and a 16S rDNA assay was performed to assess the regulation of intestinal flora by GQD. RESULTS: Overexpression of YTHDF1 upregulated GLS1 expression and induced OXA-resistance in CRC. GQD induced apoptosis in LoVo/OXAR, increased OXA accumulation in LoVo/OXAR, inhibited expression of YTHDF1 and GLS1 when administered alone and in combination with OXA, and suppressed GLS1 activity to reverse drug resistance with good synergistic effects. GQD and OXA combination or GLS1 inhibitor alleviated OXA toxicity, reduced the volume of tumor xenografts in nude mice, inhibited YTHDF1 and GLS1 protein expression and GLS1 activity, adjusted the intestinal flora, and significantly reversed the increased Firmicutes/Bacteroidetes ratio. CONCLUSION: GQD has shown superior efficacy in reversing OXA-resistance and increasing sensitivity. These findings indicate that the therapy combined with GQD has potential utility in the treatment of OXA-resistant CRC.

5.
ACS Appl Mater Interfaces ; 16(29): 37757-37769, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39001806

RÉSUMÉ

Superwetting surfaces are often applied in oil/water separation. Hydrogels have been widely prepared as superhydrophilic/underwater superoleophobic materials for oil/water separation since they are naturally hydrophilic. Hydrogels usually need to be combined with porous substrates such as stainless steel mesh (SSM) due to their poor mechanical properties. However, it is usually inevitable that the pores of the substrate are clogged during the actual preparation process, leading to a significant decrease in the flux, which limits its effective application. In this study, acrylic acid (AA), chitosan (CS) and modified silica were utilized to form a layer of dual-network PAA/CS@SiO2 hydrogel by photopolymerization on SSM, followed by a simple and novel ultrasonic-assisted pore-making method to generate numerous pores in situ on the surface of the hydrogel-coated mesh, which led to an increase in water flux from 0 to 70,000 L m-2 h-1 without decreasing the separation efficiency. After 100 separations of a mixture of n-hexane and water, the flux was still higher than 50,000 L m-2 h-1 with a separation efficiency above 99%, which is superior to most of hydrogel-coated meshes reported so far. Moreover, the prepared PAA/CS@SiO2 hydrogel-coated mesh also has good environmental stability, low swelling, and self-cleaning properties. We believe that the strategy of this study will provide a simple new perspective when hydrogels block the substrate pores, resulting in low water flux.

6.
J Fungi (Basel) ; 10(7)2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39057377

RÉSUMÉ

Astragalus membranaceus is a famous traditional medicinal plant. However, drought and cadmium (Cd) pollution are the main abiotic stress factors that affect plant growth and yield and the ability to improve the host's stress resistance through the use of beneficial endophytic fungi. To evaluate the tolerance of dark septate endophytes (DSE) to various abiotic stresses, 10 DSE strains [Microsphaeropsis cytisi (Mc), Alternaria alstroemeriae (Aa), Stagonosporopsis lupini (Sl), Neocamarosporium phragmitis (Np), Paraphoma chlamydocopiosa (Pc), Macrophomina phaseolina (Mp'), Papulaspora equi (Pe), Alternaria tellustris (At), Macrophomina pseudophaseolina (Mp), and Paraphoma radicina (Pr)] were investigated under different drought and Cd stressors in vitro by using solid-plate cultures and liquid-shaker cultures in the current study. The experiments involved using varying concentrations of PEG (0, 9, 18, and 27%) and Cd2+ (0, 25, 50, and 100 mg/L) to simulate different stress conditions on DSE. Additionally, the effect of DSE (Np and At) on the growth of A. membranaceus at different field water capacities (70% and 40%) and at different CdCl2 concentrations (0, 5, 10, and 15 mg Cd/kg) in soil was studied. The results demonstrated that the colony growth rates of Aa, Np, Pc, Mp', and Mp were the first to reach the maximum diameter at a PEG concentration of 18%. Aa, Np, and At remained growth-active at 100 mg Cd/L. In addition, Aa, Np, and At were selected for drought and Cd stress tests. The results of the drought-combined-with-Cd-stress solid culture indicated that the growth rate of Np was significantly superior to that of the other strains. In the liquid culture condition, the biomasses of Np and Aa were the highest, with biomasses of 1.39 g and 1.23 g under the concentration of 18% + 25 mg Cd/L, and At had the highest biomass of 1.71 g at 18% + 50 mg Cd/L concentration, respectively. The CAT and POD activities of Np reached their peak levels at concentrations of 27% + 50 mg Cd/L and 27% + 25 mg Cd/L, respectively. Compared to the control, these levels indicated increases of 416.97% and 573.12%, respectively. Aa, Np, and At positively influenced SOD activity. The glutathione (GSH) contents of Aa, Np, and At were increased under different combined stressors of drought and Cd. The structural-equation-modeling (SEM) analysis revealed that Aa positively influenced biomass and negatively affected Cd content, while Np and At positively influenced Cd content. Under the stress of 40% field-water capacity and the synergistic stress of 40% field-water capacity and 5 mg Cd/kg soil, Np and At significantly increased root weight of A. membranaceus. This study provides guidance for the establishment of agricultural planting systems and has good development and utilization value.

7.
Article de Anglais | MEDLINE | ID: mdl-39058614

RÉSUMÉ

Graph Neural Networks (GNNs) play a pivotal role in learning representations of brain networks for estimating brain age. However, the over-squashing impedes interactions between long-range nodes, hindering the ability of message-passing mechanism-based GNNs to learn the topological structure of brain networks. Graph rewiring methods and curvature GNNs have been proposed to alleviate over-squashing. However, most graph rewiring methods overlook node features and curvature GNNs neglect the geometric properties of signed curvature. In this study, a Signed Curvature GNN (SCGNN) was proposed to rewire the graph based on node features and curvature, and learn the representation of signed curvature. First, a Mutual Information Ollivier-Ricci Flow (MORF) was proposed to add connections in the neighborhood of edge with the minimal negative curvature based on the maximum mutual information between node features, improving the efficiency of information interaction between nodes. Then, a Signed Curvature Convolution (SCC) was proposed to aggregate node features based on positive and negative curvature, facilitating the model's ability to capture the complex topological structures of brain networks. Additionally, an Ollivier-Ricci Gradient Pooling (ORG-Pooling) was proposed to select the key nodes and topology structures by curvature gradient and attention mechanism, accurately obtaining the global representation for brain age estimation. Experiments conducted on six public datasets with structural magnetic resonance imaging (sMRI), spanning ages from 18 to 91 years, validate that our method achieves promising performance compared with existing methods. Furthermore, we employed the gaps between brain age and chronological age for identifying Alzheimer's Disease (AD), yielding the best classification performance.

8.
J Am Chem Soc ; 146(32): 22736-22746, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39078265

RÉSUMÉ

G-quadruplex (G4), an unconventional nucleic acid structure, shows polymorphism in its topological morphology. The parallel G4 topology is the most prevalent form in organisms and plays a regulatory role in many biological processes. Designing fluorescent probes with high specificity for parallel G4s is important but challenging. Herein, a supramolecular assembly of the anionic cyanine dye SCY-5 is reported, which selectively identifies parallel G4 topology. SCY-5 can clearly distinguish parallel G4s from other G4s and non-G4s, even including hybrid-type G4s with parallel characteristics. The high specificity mechanism of SCY-5 involves a delicate balance between electrostatic repulsion and π-π interaction between SCY-5 and G4s. Using SCY-5, cellular RNA extracted from peripheral venous blood was quantitatively detected, and a remarkable increase in RNA G4 content in cancer patients compared to healthy volunteers was confirmed for the first time. This study provides new insights for designing specific probes for parallel G4 topology and opens a new path for clinical cancer diagnosis using RNA G4 as a biomarker.


Sujet(s)
Carbocyanines , Colorants fluorescents , G-quadruplexes , Tumeurs , Humains , Carbocyanines/composition chimique , Colorants fluorescents/composition chimique , Tumeurs/diagnostic , ARN/composition chimique , ARN/analyse
9.
World J Clin Cases ; 12(18): 3395-3402, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38983409

RÉSUMÉ

BACKGROUND: Hepatectomy is the first choice for treating liver cancer. However, inflammatory factors, released in response to pain stimulation, may suppress perioperative immune function and affect the prognosis of patients undergoing hepatectomies. AIM: To determine the short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function. METHODS: Clinical data from patients with liver cancer admitted to Suzhou Ninth People's Hospital from January 2020 to December 2023 were retrospectively analyzed. Thirty-five patients underwent laparoscopic hepatectomy for liver cancer (liver cancer resection group) and 35 patients underwent medical image-guided microwave ablation (liver cancer ablation group). The short-term efficacy, complications, liver function, and immune function indices before and after treatment were compared between the two groups. RESULTS: One month after treatment, 19 patients experienced complete remission (CR), 8 patients experienced partial remission (PR), 6 patients experienced stable disease (SD), and 2 patients experienced disease progression (PD) in the liver cancer resection group. In the liver cancer ablation group, 21 patients experienced CR, 9 patients experienced PR, 3 patients experienced SD, and 2 patients experienced PD. No significant differences in efficacy and complications were detected between the liver cancer ablation and liver cancer resection groups (P > 0.05). After treatment, total bilirubin (41.24 ± 7.35 vs 49.18 ± 8.64 µmol/L, P < 0.001), alanine aminotransferase (30.85 ± 6.23 vs 42.32 ± 7.56 U/L, P < 0.001), CD4+ (43.95 ± 5.72 vs 35.27 ± 5.56, P < 0.001), CD8+ (20.38 ± 3.91 vs 22.75 ± 4.62, P < 0.001), and CD4+/CD8+ (2.16 ± 0.39 vs 1.55 ± 0.32, P < 0.001) were significantly different between the liver cancer ablation and liver cancer resection groups. CONCLUSION: The short-term efficacy and safety of microwave ablation and laparoscopic surgery for the treatment of liver cancer are similar, but liver function recovers quickly after microwave ablation, and microwave ablation may enhance immune function.

11.
Acta Pharmacol Sin ; 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39075227

RÉSUMÉ

A detailed chemical investigation of the Hainan soft coral Lobophytum crassum led to the identification of a class of polyoxygenated cembrane-type macrocyclic diterpenes (1-28), including three new flexible cembranoids, lobophycrasins E-G (2-4), and twenty-five known analogues. Their structures were elucidated by combining extensive spectroscopic data analysis, quantum mechanical-nuclear magnetic resonance (QM-NMR) methods, the modified Mosher's method, X-ray diffraction analysis, and comparison with data reported in the literature. Bioassays revealed that sixteen cembranoids inhibited the proliferation of H1975, MDA-MB231, A549, and H1299 cells. Among them, Compounds 10, 17, and 20 exhibited significant antiproliferative activities with IC50 values of 1.92-8.82 µM, which are very similar to that of the positive control doxorubicin. Molecular mechanistic studies showed that the antitumour activity of Compound 10 was closely related to regulation of the ROR1 and ErbB3 signalling pathways. This study may provide insight into the discovery and utilization of marine macrocyclic cembranoids as lead compounds for anticancer drugs.

12.
Sci Total Environ ; 946: 174436, 2024 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-38964403

RÉSUMÉ

Semi-aerobic aged refuse biofilters (SAARB) are commonly-used biotechnologies for treating landfill leachate. In actual operation, SAARB often faces harsh conditions characterized by high concentrations of chemical oxygen demand (COD) and Cl-, as well as a low carbon-to-nitrogen ratio (C/N), which can disrupt the microbial community within SAARB, leading to operational instability. Maintaining the stable operation of SAARB is crucial for the efficient treatment of landfill leachate. However, the destabilization mechanism of SAARB under harsh conditions remains unclear. To address this, the study simulated the operation of SAARB under three harsh conditions, namely, high COD loading (H-COD), high chloride ion (Cl-) concentration environment (H-Cl-), and low C/N ratio environment (L-C/N). The aim is to reveal the destabilization mechanism of SAARB under harsh conditions by analyzing the fluorescence characteristics of effluent DOM and the microbial community in aged refuse. The results indicate that three harsh conditions have different effects on SAARB. H-COD leads to the accumulation of proteins; H-Cl- impedes the reduction of nitrite nitrogen; L-C/N inhibits the degradation of humic substances. These outcomes are attributed to the specific effects of different factors on the microbial communities in different zones of SAARB. H-COD and L-C/N mainly affect the degradation of organic matter in aerobic zone, while H-Cl- primarily impedes the denitrification process in the anaerobic zone. The abnormal enrichment of Corynebacterium, Castellaniella, and Sporosarcina can indicate the instability of SAARB under three harsh conditions, respectively. To maintain the steady operation of SAARB, targeted acclimation of the microbial community in SAARB should be carried out to cope with potentially harsh operating conditions. Besides, timely mitigation of loads should be implemented when instability characteristics emerge, and carbon sources and electron donors should be provided to restore treatment performance effectively.


Sujet(s)
Polluants chimiques de l'eau , Polluants chimiques de l'eau/analyse , Filtration , Élimination des déchets liquides/méthodes , Analyse de la demande biologique en oxygène , Azote , Aérobiose , Élimination des déchets/méthodes , Bioréacteurs , Fluorescence , Microbiote
14.
Front Bioeng Biotechnol ; 12: 1404651, 2024.
Article de Anglais | MEDLINE | ID: mdl-38832127

RÉSUMÉ

Skin wound healing is a complex and tightly regulated process. The frequent occurrence and reoccurrence of acute and chronic wounds cause significant skin damage to patients and impose socioeconomic burdens. Therefore, there is an urgent requirement to promote interdisciplinary development in the fields of material science and medicine to investigate novel mechanisms for wound healing. Cerium oxide nanoparticles (CeO2 NPs) are a type of nanomaterials that possess distinct properties and have broad application prospects. They are recognized for their capabilities in enhancing wound closure, minimizing scarring, mitigating inflammation, and exerting antibacterial effects, which has led to their prominence in wound care research. In this paper, the distinctive physicochemical properties of CeO2 NPs and their most recent synthesis approaches are discussed. It further investigates the therapeutic mechanisms of CeO2 NPs in the process of wound healing. Following that, this review critically examines previous studies focusing on the effects of CeO2 NPs on wound healing. Finally, it suggests the potential application of cerium oxide as an innovative nanomaterial in diverse fields and discusses its prospects for future advancements.

15.
Antioxidants (Basel) ; 13(6)2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38929098

RÉSUMÉ

Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.

16.
Org Lett ; 26(25): 5280-5284, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38869309

RÉSUMÉ

This work presents a straightforward method for synthesizing a series of phosphorus-containing polycyclic aromatic hydrocarbons (P-PAHs) featuring an internal ylidic bond. The method involves anion exchange, alkyne annulation, and deprotonation reactions, enabling the efficient production of cyclic phosphonium salts, which serve as pivotal intermediates in the synthesis of P-PAHs. The alkyne annulation reaction exhibits high regioselectivity, ensuring the successful synthesis of λ5-phosphaphenanthrene isomers. Additionally, the incorporation of electron-withdrawing groups effectively stabilizes the internal ylidic bond of P-PAHs.

17.
Nat Prod Res ; : 1-10, 2024 Jun 02.
Article de Anglais | MEDLINE | ID: mdl-38824425

RÉSUMÉ

The sciatic nerve is the largest sensorimotor nerve within the peripheral nervous system (PNS), possessing the ability to produce endogenous neurotrophins. Compound nerve action potentials (CNAPs) are regarded as a physiological/pathological indicator to identify nerve activity in signal transduction of the PNS. Astragaloside (AST), a small-molecule saponin purified from Astragalus membranaceus, is widely used to treat chronic disease. Nonetheless, the regulatory effects of AST on the sciatic nerve remain unknown. Therefore, the present investigation was undertaken to study the effect of AST on CNAPs of frog sciatic nerves. Here, AST depressed the conduction velocity and amplitude of CNAPs. Importantly, the AST-induced responses could be blocked by a Ca2+-free medium, or by applying all Ca2+ channel antagonists (CdCl2/LaCl3) or L-type Ca2+ channel blockers (nifedipine/diltiazem), but not the T-type and P-type Ca2+ channel antagonist (NiCl2). Altogether, these findings suggested that AST may attenuate the CNAPs of frog sciatic nerves in vitro via the L-type Ca2+-channel dependent mechanisms.

18.
Ann Hematol ; 103(7): 2337-2346, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38849603

RÉSUMÉ

High hyperdiploid karyotype with ≥ 49 chromosomes (which will be referred to as HHK) is rare in acute myeloid leukemia (AML). The European leukemia network (ELN) excluded those harboring only numerical changes (with ≥ 3 chromosome gains) from CK and listed them in the intermediate risk group, while the UK National Cancer Research Institute Adult Leukaemia Working Group classification defined ≥ 4 unrelated chromosome abnormalities as the cutoff for a poorer prognosis. Controversies occurred among studies on the clinical outcome of HHK AML, and their molecular characteristics remained unstudied. We identified 1.31% (133/10,131) HHK cases within our center, among which 48 cases only had numerical changes (NUM), 42 had ELN defined adverse abnormalities (ADV) and 43 had other structural abnormalities (STR). Our study demonstrated that: (1) No statistical significance for overall survival (OS) was observed among three cytogenetic subgroups (NUM, STR and ADV) and HHK AML should be assigned to the adverse cytogenetic risk group. (2) The OS was significantly worse in HHK AML with ≥ 51 chromosomes compared with those with 49-50 chromosomes. (3) The clinical characteristics were similar between NUM and STR group compared to ADV group. The former two groups had higher white blood cell counts and blasts, lower platelet counts, and mutations associated with signaling, while the ADV group exhibited older age, higher chromosome counts, higher percentage of myelodysplastic syndrome (MDS) history, and a dominant TP53 mutation.


Sujet(s)
Leucémie aigüe myéloïde , Mutation , Protéine p53 suppresseur de tumeur , Humains , Leucémie aigüe myéloïde/génétique , Leucémie aigüe myéloïde/mortalité , Leucémie aigüe myéloïde/diagnostic , Adulte d'âge moyen , Femelle , Mâle , Adulte , Sujet âgé , Protéine p53 suppresseur de tumeur/génétique , Chine/épidémiologie , Pronostic , Adolescent , Jeune adulte , Sujet âgé de 80 ans ou plus , Aberrations des chromosomes , Caryotype , Taux de survie , Caryotypage
19.
Antimicrob Resist Infect Control ; 13(1): 66, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38886812

RÉSUMÉ

BACKGROUND: Carbapenem-resistant E. coli (CREco) pose a significant public health threat due to their multidrug resistance. Colistin is often a last-resort treatment against CREco; however, the emergence of colistin resistance gene mcr-1 complicates treatment options. METHODS: Two E. coli strains (ECO20 and ECO21), recovered from hospitalized patients in distinct wards, exhibited resistance to carbapenems and colistin. Whole-genome sequencing and phenotypic characterization were employed to study resistance patterns, plasmid profiles, transferability of resistance and virulence genes, and siderophore production capabilities. Comparative genome analysis was used to investigate the genetic environment of mcr-1, blaNDM-7, and virulence clusters. RESULTS: Both E. coli strains exhibited thr presence of both mcr-1 and blaNDM-7 genes, showing high resistance to multiple antibiotics. Genomic analysis revealed the clonal transmission of these strains, possessing identical plasmid profiles (pMCR, pNDM, and pVir) associated with colistin resistance, carbapenem resistance, and virulence factors. Conjugation experiments confirmed the transferability of these plasmids, indicating their potential to disseminate resistance and virulence traits to other strains. Comparative genomic analyses unveiled the distribution of mcr-1 (IncX4-type) and blaNDM (IncX3-type) plasmids across diverse bacterial species, emphasizing their adaptability and threat. The novelty of pVir indicates its potential role in driving the evolution of highly adaptable and pathogenic strains. CONCLUSIONS: Our findings underscore the co-occurrence of mcr-1, blaNDM-7, and siderophore-producing plasmids in E. coli, which poses a significant concern for global health. This research is crucial to unravel the complex mechanisms governing plasmid transfer and recombination and to devise robust strategies to control their spread in healthcare settings.


Sujet(s)
Antibactériens , Multirésistance bactérienne aux médicaments , Infections à Escherichia coli , Protéines Escherichia coli , Escherichia coli , Plasmides , Sidérophores , Plasmides/génétique , Escherichia coli/génétique , Escherichia coli/effets des médicaments et des substances chimiques , Protéines Escherichia coli/génétique , Humains , Infections à Escherichia coli/microbiologie , Antibactériens/pharmacologie , Chine , Multirésistance bactérienne aux médicaments/génétique , Séquençage du génome entier , Colistine/pharmacologie , Tests de sensibilité microbienne , bêta-Lactamases/génétique , Hôpitaux , Carbapénèmes/pharmacologie , Facteurs de virulence/génétique
20.
Mikrochim Acta ; 191(7): 429, 2024 06 28.
Article de Anglais | MEDLINE | ID: mdl-38942915

RÉSUMÉ

The engineering of a home-made portable double-layer filtration and concentration device with the common syringe for rapid analysis of water samples is reported. The core elements of the device were two installed filtration membranes with different pore sizes for respective functions. The upper filtration membrane was used for preliminary intercepting large interfering impurities (interception membrane), while the lower filtration membrane was used for collecting multiple target pathogens (enrichment membrane) for determination. This combination can make the contaminated environmental water, exemplified by surface water, filtrated quickly through the device and just retained the target bacteria of Escherichia coli O157:H7, Staphylococcus aureus, and Listeria monocytogenes on the lower enrichment membrane. Integrating with surface-enhanced Raman spectra (SERS) platform to decode the SERS-Tags (SERS-TagCVa, SERS-TagR6G, and SERS-TagMB) already labeled on each of the enriched bacteria based the antibody-mediated immuno-recognition effect, fast separation, concentration, and detection of multiple pathogenic bacteria from the bulk of contaminated environmental water were realized. Results show that within 30 min, all target bacteria in the lake water can be simultaneously and accurately measured in the range from 101 to 106 CFU mL-1 with detection limit of 10.0 CFU mL-1 without any pre-culture procedures. This work highlights the simplicity, rapidness, cheapness, selectivity, and the robustness of the constructed method for simultaneous detecting multiple pathogens in aqueous samples. This protocol opens a new avenue for facilitating the development of versatile analytical tools for drinking water and food safety monitoring in underdeveloped or developing countries.


Sujet(s)
Eau de boisson , Escherichia coli O157 , Filtration , Limite de détection , Listeria monocytogenes , Analyse spectrale Raman , Staphylococcus aureus , Analyse spectrale Raman/méthodes , Eau de boisson/microbiologie , Filtration/instrumentation , Staphylococcus aureus/isolement et purification , Listeria monocytogenes/isolement et purification , Escherichia coli O157/isolement et purification , Nanoparticules métalliques/composition chimique , Microbiologie de l'eau
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE