Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Rice (N Y) ; 17(1): 18, 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38429614

RÉSUMÉ

Sulfur (S) is one of the main components of important biomolecules, which has been paid more attention in the anaerobic environment of rice cultivation. In this study, 12 accessions of rice materials, belonging to two Asian rice domestication systems and one African rice domestication system, were used by shotgun metagenomics sequencing to compare the structure and function involved in S cycle of rhizosphere microbiome between wild and cultivated rice. The sulfur cycle functional genes abundances were significantly different between wild and cultivated rice rhizosphere in the processes of sulfate reduction and other sulfur compounds conversion, implicating that wild rice had a stronger mutually-beneficial relationship with rhizosphere microbiome, enhancing sulfur utilization. To assess the effects of sulfate reduction synthetic microbiomes, Comamonadaceae and Rhodospirillaceae, two families containing the genes of two key steps in the dissimilatory sulfate reduction, aprA and dsrA respectively, were isolated from wild rice rhizosphere. Compared with the control group, the dissimilatory sulfate reduction in cultivated rice rhizosphere was significantly improved in the inoculated with different proportions groups. It confirmed that the synthetic microbiome can promote the S-cycling in rice, and suggested that may be feasible to construct the synthetic microbiome step by step based on functional genes to achieve the target functional pathway. In summary, this study reveals the response of rice rhizosphere microbial community structure and function to domestication, and provides a new idea for the construction of synthetic microbiome.

2.
Microorganisms ; 11(10)2023 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-37894042

RÉSUMÉ

Fusarium root rot (FRR) seriously affects the growth and productivity of A. chinensis. Therefore, protecting A. chinensis from FRR has become an important task, especially for increasing A. chinensis production. The purpose of this study was to screen FRR control strains from the A. chinensis rhizosphere soil. Eighty-four bacterial strains and seven fungal strains were isolated, and five strains were identified with high inhibitory effects against Fusarium oxysporum (FO): Trichoderma harzianum (MH), Bacillus amyloliquefaciens (CJ5, CJ7, and CJ8), and Bacillus subtilis (CJ9). All five strains had high antagonistic effects in vitro. Results showed that MH and CJ5, as biological control agents, had high control potential, with antagonistic rates of 86.01% and 82.78%, respectively. In the pot experiment, the growth levels of roots and stems of A. chinensis seedlings treated with MH+CJ were significantly higher than those of control plants. The total nitrogen, total phosphorus, total potassium, indoleacetic acid, and chlorophyll contents in A. chinensis leaves were also significantly increased. In the biocontrol test, the combined MH + CJ application significantly decreased the malondialdehyde content in A. chinensis roots and significantly increased the polyphenol oxidase, phenylalanine ammonolyase, and peroxidase ability, indicating a high biocontrol effect. In addition, the application of Bacillus spp. and T. harzianum increased the abundance and diversity of the soil fungal population, improved the soil microbial community structure, and significantly increased the abundance of beneficial strains, such as Holtermanniella and Metarhizium. The abundance of Fusarium, Volutella, and other pathogenic strains was significantly reduced, and the biocontrol potential of A. chinensis root rot was increased. Thus, Bacillus spp. and T. harzianum complex bacteria can be considered potential future biocontrol agents for FRR.

3.
Bioresour Technol ; 381: 129132, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37149269

RÉSUMÉ

To excavate a complex co-degradation system for decomposing cellulose more efficiently, cellulose-degrading bacteria, including Bacillus subtilis WF-8, Bacillus licheniformis WF-11, Bacillus Cereus WS-1 and Streptomyces Nogalater WF-10 were added during maize straw and cattle manure aerobic composting. Bacillus and Streptomyces successfully colonized, which improve cellulose degrading ability. Continuous colonization of cellulose-degrading bacteria can promote the fungi to produce more precursors for humus and promote the negative correlation with Ascomycota. In the current study, the addition of cellulose-degrading bacteria has resulted in the rapid development of Mycothermus and Remersonia in the phylum Ascomycota as keystone fungal genera which constitute the foundation of the co-degradation system. Network analysis reveals the complex co-degradation system of efficient cellulose bacteria and mature fungi to treat cellulose in the process of straw aerobic composting mainly related to the influence of total carbon (TC) /total nitrogen (TN) and humic acid (HA)/fulvic acid (FA). This research offers a complex co-degradation system more efficiently to decompose cellulose aiming to maintain the long-term sustainability of agriculture.


Sujet(s)
Cellulose , Compostage , Animaux , Bovins , Cellulose/métabolisme , Agriculture , Sol , Bacillus subtilis/métabolisme , Fumier/microbiologie
4.
Microorganisms ; 10(7)2022 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-35889186

RÉSUMÉ

Wild rice is an important improved resource for cultivated rice and its unique ability to resist biotic and abiotic stress has attracted the attention of many scholars. The microbial community structure in the rhizosphere and leaf area of different rice varieties is also different, which may be one of the reasons for the difference in stress resistance between wild rice and cultivated rice. Forty-six bacteria were screened from the rhizosphere and phyllospheric of four different wild rice varieties. The results of functions of the screened strains showed that 18 strains had a good inhibitory effect on rice blast, and 33 strains had the ability to dissolve phosphorus, potassium, or fix nitrogen. Through potted experiment, the three bacterial strains, 499G2 (Peribacillus simplex), 499G3 (Bacillus velezensis), and 499G4 (B. megaterium) have a positive effect on the growth of cultivated rice in addition to the resistance to rice blast. The contents of total nitrogen, total phosphorus, total potassium, indole acetic acid (IAA), and chlorophyll in plant leaves were increased. In addition, in the verification test of rice blast infection, the application of inoculants can significantly reduce the content of malondialdehyde (MDA), increase the content of soluble sugar, and increase the activity of plant antioxidant enzymes, which may thereby improve rice in resisting to rice blast.

5.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-35216487

RÉSUMÉ

With the warming global climate, drought stress is considered to be the most important abiotic factor limiting plant growth and yield in the world. Drought stress has serious impacts on crop production. Many researchers have studied the influences of drought stress on crop production and plant physiology; however, few researchers have combined root exudates with root-associated microbiomes for their mutual effects under drought conditions. In this review, we systematically illustrate the impact of drought stress on root exudates and root-associated microbiomes, and then we discuss the mutual regulation of root-associated microbiomes and the host plant in helping the plant adapt to drought. Finally, we construct a framework for the mutual connections between the plant, root exudates, and the microbiome. We hope this review can provide some significant guidelines to promote the study of drought resistance in plants in association with the rhizosphere microbiota.


Sujet(s)
Exsudats et transsudats/microbiologie , Microbiote/physiologie , Racines de plante/microbiologie , Racines de plante/physiologie , Plantes/microbiologie , Stress physiologique/physiologie , Production végétale/méthodes , Sécheresses , Rhizosphère , Microbiologie du sol
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE