Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Front Neurosci ; 16: 978431, 2022.
Article de Anglais | MEDLINE | ID: mdl-36188454

RÉSUMÉ

High-fat diets (HFDs) are related to the incidence of obesity and diabetes, but the effect of high-fat diet-induced brain damage remains to be clarified. In our study, we found that 24 weeks of a HFD effectively induced obesity and a change in fur color in mice. In addition, the mice also exhibited deficits in learning and memory. We further found that autophagic flux was impaired in mice after HFD feeding. Hypoxia-inducible factor 1α (HIF-1α) expression was significantly increased in HFD-fed mice, and HFD feeding inhibited adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and induced mechanistic target of rapamycin (mTOR) phosphorylation and p70S6K expression. Treatment of HFD-induced BV2 cell model with palmitic acid (PA) was used to further verify a similar result. We concluded that improving tissue hypoxia or enhancing autophagy through the AMPK/mTOR/p70S6K pathway may be a relevant strategy for improving obesity- and ageing-related disorders.

2.
J Alzheimers Dis ; 80(3): 949-961, 2021.
Article de Anglais | MEDLINE | ID: mdl-33612545

RÉSUMÉ

Amyloid-ß (Aß) peptides and hyperphosphorylated tau protein are the most important pathological markers of Alzheimer's disease (AD). Neuroinflammation and oxidative stress are also involved in the development and pathological mechanism of AD. Hypoxia inducible factor-1α (HIF-1α) is a transcriptional factor responsible for cellular and tissue adaption to low oxygen tension. Emerging evidence has revealed HIF-1α as a potential medicinal target for neurodegenerative diseases. On the one hand, HIF-1α increases AßPP processing and Aß generation by promoting ß/γ-secretases and suppressing α-secretases, inactivates microglia and reduces their activity, contributes to microglia death and neuroinflammation, which promotes AD pathogenesis. On the other hand, HIF-1α could resist the toxic effect of Aß, inhibits tau hyperphosphorylation and promotes microglial activation. In summary, this review focuses on the potential complex roles and the future perspectives of HIF-1α in AD, in order to provide references for seeking new drug targets and treatment methods for AD.


Sujet(s)
Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Animaux , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE