Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Int J Ophthalmol ; 17(7): 1292-1299, 2024.
Article de Anglais | MEDLINE | ID: mdl-39026916

RÉSUMÉ

AIM: To describe the characteristics of peripapillary hyperreflective ovoid mass-like structure (PHOMS) in myopic children and to investigate factors associated with PHOMS. METHODS: This retrospective observational study included 101 eyes of 101 children (age ≤17y) with myopia. All included patients underwent comprehensive clinical examination. Optic nerve canal parameters, including disc diameter, optic nerve head (ONH) tilt angle, and border tissue angle were measured using serial enhanced-depth imaging spectral-domain optical coherence tomography (EDI-OCT). Based on the optic disc drusen consortium's definition of PHOMS, eyes were classified as PHOMS group and non-PHOMS group. PHOMS was categorized according to height. RESULTS: Sixty-seven (66.3%) eyes were found with PHOMS. Small PHOMS could only be detected by optical coherence tomography (OCT). Medium PHOMS could be seen with blurred optic disc borders corresponding to OCT. The most frequent location of PHOMS was at the nasosuperior (91%, 61 of 67 eyes) to ONH disc. The axial length and spherical equivalent were more myopic in the PHOMS group than in the non-PHOMS group (both P<0.001). ONH tilt angle was also significantly greater in PHOMS group than in non-PHOMS group [8.90 (7.16-10.54) vs 3.93 (3.09-5.25), P<0.001]. Border tissue angle was significantly smaller in PHOMS group than in non-PHOMS group [29.70 (20.90-43.81) vs 45.62 (35.18-60.45), P<0.001]. In the multivariable analysis, spherical equivalent (OR=3.246, 95%CI=1.209-8.718, P=0.019) and ONH tilt angle (OR=3.275, 95%CI=1.422-7.542, P=0.005) were significantly correlated with PHOMS. There was no disc diameter associated with PHOMS. In the linear regression analysis, border tissue angle was negatively associated with PHOMS height (ß=-2.227, P<0.001). CONCLUSION: PHOMS is associated with optic disc tilt and optic disc nasal shift in myopia. Disc diameter is not a risk factor for PHOMS. The changes in ONH caused by axial elongation facilitated an understanding of the mechanism of PHOMS.

2.
Int J Ophthalmol ; 14(12): 1915-1920, 2021.
Article de Anglais | MEDLINE | ID: mdl-34926208

RÉSUMÉ

AIM: To quantify the area and density of retinal vascularity by ultra-widefield fluorescein angiography (UWFA). METHODS: In a retrospective study, UWFA images were obtained using an ultra-widefield imaging device in 42 normal eyes of 42 patients. Central and peripheral steered images were used to define the edge of retinal vasculature by a certified grader. The length from the center of the optic disc to the edge of retinal vascularity (RVL) in each quadrant and the total retinal vascular perfusion area (RVPA) were determined by the grader using OptosAdvance software. The density of retinal vascularity (RVD) was quantified in different zones of central-steered images using Image J software. RESULTS: Among 42 healthy eyes, the values for mean RVL in each quadrant were 19.007±0.781 mm (superior), 18.467±0.869 mm (inferior), 17.738±0.622 mm (nasal) and 24.241±1.336 mm (temporal). The mean RVPA was 1140.117±73.825 mm2. The mean RVD of the total retina was 4.850%±0.638%. RVD varied significantly between different retina zones (P<0.001), and significant differences existed in the RVD values for total retinal area in patients over 50 years old compared to those under 50 years old (P=0.033). No gender difference was found. CONCLUSION: The UWFA device can be a promising tool for analyzing the overall retinal vasculature and may provide a better understanding of retinal vascular morphology in normal eyes. Aging may be related to lower RVD.

3.
Int J Ophthalmol ; 7(1): 8-13, 2014.
Article de Anglais | MEDLINE | ID: mdl-24644534

RÉSUMÉ

AIM: To investigate the protective mechanism of Gingko Biloba extract (EGb761) on the ability of retinal pigment epithelial (RPE) cells to resist light-induced damage in a comparative proteomics study. METHODS: Human RPE cells (ARPE-19) were randomly distributed to one of three groups: normal control (NC group) and light-damaged model without or with EGb761 group (M and ME groups, respectively). The light-damaged model was formed by exposing to white light (2 200±300)lx for 6h. The RPE cells in ME group were conducted with EGb 761 (100µg/mL) before light exposure. The soluble cellular proteins extracting from each groups were separated by two-dimensional electrophoresis and stained by silver staining. Different proteins in the profiles of the gels were analyzed by Image Master Software. Two-fold expressing protein spots were identified by Matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry. RESULTS: NC, M and ME groups displayed 1 892±71, 2 145±23 and 2 216±85 protein spots, respectively. We identified 33 proteins with different expression levels between the NC and M groups, 25 proteins between the M and ME groups, and 11 proteins between the NC and ME groups. MALDI-TOF/TOF mass spectrometry successfully identified 16 proteins, including metabolic enzymes, cytoskeletal proteins, anti-oxidation proteins, and others. CONCLUSION: Differences in some important proteins, such as cathepsin B, heat shock protein, and cytochrome c reductase, indicated that multiple pathways may be induced in light-damaged RPE cells and the protective effect of EGb761.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE