Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Int J Biol Macromol ; 279(Pt 3): 135424, 2024 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-39245128

RÉSUMÉ

Oral vaccines are generally perceived to be safe, easy to administer, and have the potential to induce both systemic and mucosal immune responses. However, given the challenges posed by the harsh gastrointestinal environment and mucus barriers, the development of oral vaccines necessitates the employment of a safe and efficient delivery system. In recent years, nanoparticle-based delivery has proven to be an ideal delivery vector for the manufacture of oral vaccines. Hence, considering the above, the sucralfate acidified (SA) encapsulated N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC)/N,O-carboxymethyl chitosan (CMCS) nanoparticles (SA@N-2-HACC/CMCS NPs) were prepared, and the BSA was used as a model antigen to investigate the immune responses. The SA@N-2-HACC/CMCS NPs had a particle size of 227 ± 7.0 nm and a zeta potential of 8.43 ± 2.62 mV. The NPs displayed slow and sustained release and high stability in simulated gastric juice and intestinal fluid. RAW 264.7 macrophage-like cell line demonstrated enhanced uptake of the SA@N-2-HACC/CMCS/BSA Nps. The vaccine via oral administration markedly enhanced the residence time of BSA in the intestine for more than 12 h and elicited the production of IgG and sIgA. The SA@N-2-HACC/CMCS NPs developed here for oral administration is an excellent technique for delivering antigens and provides a path of mucosal vaccine research.

2.
Int J Biol Macromol ; 251: 126286, 2023 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-37579904

RÉSUMÉ

H7 avian influenza virus has caused multiple human infections and poses a severe public health threat. In response to the highly variable nature of AIVs, a novel, easily regenerated DNA vaccine has great potential in treating or preventing avian influenza pandemics. Nevertheless, DNA vaccines have many disadvantages, such as weak immunogenicity and poor in vivo delivery. To further characterize and solve these issues and develop a novel H7 AIV DNA vaccine with enhanced stability and immunogenicity, we constructed nine AIV DNA plasmids, and the immunogenicity screened showed that mice immunized with pßH7N2SH9 elicited stronger hemagglutination-inhibiting (HI) antibodies than other eight plasmid DNAs. Then, to address the susceptibility to degradation and low transfection rate of DNA vaccine in vivo, we developed pßH7N2SH9/DGL NPs by encapsulating the pßH7N2SH9 within the dendrigraft poly-l-lysines nanoparticles. As expected, these NPs exhibited excellent physical and chemical properties, were capable of promote lymphocyte proliferation, and induce stronger humoral and cellular responses than the naked pßH7N2SH9, including higher levels of HI antibodies than naked pßH7N2SH9, as well as the production of cytokines, namely, IL-2, IFN-α. Taken together, our results suggest that the construction of an immune-enhanced H7-AIV DNA nanovaccine may be a promising strategy against most influenza viruses.

3.
Bioeng Transl Med ; 8(3): e10510, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-37206211

RÉSUMÉ

Nanoparticles (NPs) used for oral administration have greatly improved drug bioavailability and therapeutic efficacy. Nevertheless, NPs are limited by biological barriers, such as gastrointestinal degradation, mucus barrier, and epithelial barrier. To solve these problems, we developed the PA-N-2-HACC-Cys NPs loaded with anti-inflammatory hydrophobic drug curcumin (CUR) (CUR@PA-N-2-HACC-Cys NPs) by self-assembled amphiphilic polymer, composed of the N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), hydrophobic palmitic acid (PA), and cysteine (Cys). After oral administration, the CUR@PA-N-2-HACC-Cys NPs had good stability and sustained release under gastrointestinal conditions, followed by adhering to the intestine to achieve drug mucosal delivery. Additionally, the NPs could penetrate mucus and epithelial barriers to promote cellular uptake. The CUR@PA-N-2-HACC-Cys NPs could open tight junctions between cells for transepithelial transport while striking a balance between mucus interaction and diffusion through mucus. Notably, the CUR@PA-N-2-HACC-Cys NPs improved the oral bioavailability of CUR, which remarkably relieved colitis symptoms and promoted mucosal epithelial repair. Our findings proved that the CUR@PA-N-2-HACC-Cys NPs had excellent biocompatibility, could overcome mucus and epithelial barriers, and had significant application prospects for oral delivery of the hydrophobic drugs.

4.
Int J Biol Macromol ; 221: 613-622, 2022 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-36089095

RÉSUMÉ

This is a report on the encapsulation amoxicillin (AMX) in the N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) and N,O-carboxymethyl chitosan (CMCS) nanoparticles (NPs) for biomedical applications. The N-2-HACC/CMCS NPs have broad-spectrum antibacterial properties. In order to achieve sustained and slow drug release, improve drug transport efficiency and bioavailability, prolong drug residence time, and reduce pollution, we synthesized highly efficient, easily absorbed and rapidly degradable nano-formulation veterinary antibiotics in this study. The N-2-HACC/CMCS NPs were used for the encapsulation of AMX, and the cytocompatibility, in vitro release, in vivo drug release kinetics and antimicrobial activity of N-2-HACC/CMCS/AMX NPs were investigated. The NPs displayed a round shape and smooth surface, and the NPs allowed the sustained release of AMX at a much slower rate than that of non-coated AMX. The NPs exhibited excellent cytocompatibility and the antimicrobial activity against Escherichia coli, Acinetobacter baumannii, Streptococcus pneumoniae and Staphylococcus aureus. Moreover, the NPs could store at 4 °C, -20 °C and 25 ± 5 °C for 30 d. These results suggested that the N-2-HACC/CMCS NPs could be availed as a candidate for drug delivery carrier to achieve sustained and slow release, improve bioavailability, prolong residence time at the target site, and reduce the dosage of drug.


Sujet(s)
Chitosane , Nanoparticules , Chlorure d'ammonium , Amoxicilline/pharmacologie , Vecteurs de médicaments , Antibactériens/pharmacologie , Dérivés de l'hypromellose , Escherichia coli
5.
Mater Sci Eng C Mater Biol Appl ; 101: 596-613, 2019 Aug.
Article de Anglais | MEDLINE | ID: mdl-31029353

RÉSUMÉ

Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.


Sujet(s)
Nanotechnologie/méthodes , Antinéoplasiques , Multirésistance aux médicaments , Résistance aux médicaments antinéoplasiques , Humains , Interactions hydrophobes et hydrophiles
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE