Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Am J Trop Med Hyg ; 108(6): 1127-1139, 2023 06 07.
Article de Anglais | MEDLINE | ID: mdl-37160282

RÉSUMÉ

For a malaria elimination strategy, Haiti's National Malaria Control Program piloted a mass drug administration (MDA) with indoor residual spraying (IRS) in 12 high-transmission areas across five communes after implementing community case management and strengthened surveillance. The MDA distributed sulfadoxine-pyrimethamine and single low-dose primaquine to eligible residents during house visits. The IRS campaign applied pirimiphos-methyl insecticide on walls of eligible houses. Pre- and post-campaign cross-sectional surveys were conducted to assess acceptability, feasibility, drug safety, and effectiveness of the combined interventions. Stated acceptability for MDA before the campaign was 99.2%; MDA coverage estimated at 10 weeks post-campaign was 89.6%. Similarly, stated acceptability of IRS at baseline was 99.9%; however, household IRS coverage was 48.9% because of the high number of ineligible houses. Effectiveness measured by Plasmodium falciparum prevalence at baseline and 10 weeks post-campaign were similar: 1.31% versus 1.43%, respectively. Prevalence of serological markers were similar at 10 weeks post-campaign compared with baseline, and increased at 6 months. No severe adverse events associated with the MDA were identified in the pilot; there were severe adverse events in a separate, subsequent campaign. Both MDA and IRS are acceptable and feasible interventions in Haiti. Although a significant impact of a single round of MDA/IRS on malaria transmission was not found using a standard pre- and post-intervention comparison, it is possible there was blunting of the peak transmission. Seasonal malaria transmission patterns, suboptimal IRS coverage, and low baseline parasitemia may have limited the effectiveness or the ability to measure effectiveness.


Sujet(s)
Insecticides , Paludisme , Humains , Primaquine/effets indésirables , Administration massive de médicament , Études transversales , Haïti/épidémiologie , Études de faisabilité , Lutte contre les moustiques , Paludisme/traitement médicamenteux , Paludisme/épidémiologie , Paludisme/prévention et contrôle
2.
Trop Med Infect Dis ; 8(3)2023 Mar 09.
Article de Anglais | MEDLINE | ID: mdl-36977163

RÉSUMÉ

Wolbachia infection in Anopheles albimanus mosquitoes can render mosquitoes less capable of spreading malaria. We developed and analyzed a mechanistic compartmental ordinary differential equation model to evaluate the effectiveness of Wolbachia-based vector control strategies among wild Anopheles mosquitoes in Haiti. The model tracks the mosquito life stages, including egg, larva, and adult (male and female). It also accounts for critical biological effects, such as the maternal transmission of Wolbachia through infected females and cytoplasmic incompatibility, which effectively sterilizes uninfected females when they mate with infected males. We derive and interpret dimensionless numbers, including the basic reproductive number and next-generation numbers. The proposed system presents a backward bifurcation, which indicates a threshold infection that needs to be exceeded to establish a stable Wolbachia infection. The sensitivity analysis ranks the relative importance of the epidemiological parameters at baseline. We simulate different intervention scenarios, including prerelease mitigation using larviciding and thermal fogging before the release, multiple releases of infected populations, and different release times of the year. Our simulations show that the most efficient approach to establishing Wolbachia is to release all the infected mosquitoes immediately after the prerelease mitigation process. Moreover, the model predicts that it is more efficient to release during the dry season than the wet season.

3.
PLOS Glob Public Health ; 2(5): e0000167, 2022.
Article de Anglais | MEDLINE | ID: mdl-36962155

RÉSUMÉ

The national deployment of polyvalent community health workers (CHWs) is a constitutive part of the strategy initiated by the Ministry of Health to accelerate efforts towards universal health coverage in Haiti. Its implementation requires the planning of future recruitment and deployment activities for which mathematical modelling tools can provide useful support by exploring optimised placement scenarios based on access to care and population distribution. We combined existing gridded estimates of population and travel times with optimisation methods to derive theoretical CHW geographical placement scenarios including constraints on walking time and the number of people served per CHW. Four national-scale scenarios that align with total numbers of existing CHWs and that ensure that the walking time for each CHW does not exceed a predefined threshold are compared. The first scenario accounts for population distribution in rural and urban areas only, while the other three also incorporate in different ways the proximity of existing health centres. Comparing these scenarios to the current distribution, insufficient number of CHWs is systematically identified in several departments and gaps in access to health care are identified within all departments. These results highlight current suboptimal distribution of CHWs and emphasize the need to consider an optimal (re-)allocation.

4.
Elife ; 102021 06 01.
Article de Anglais | MEDLINE | ID: mdl-34058123

RÉSUMÉ

Towards the goal of malaria elimination on Hispaniola, the National Malaria Control Program of Haiti and its international partner organisations are conducting a campaign of interventions targeted to high-risk communities prioritised through evidence-based planning. Here we present a key piece of this planning: an up-to-date, fine-scale endemicity map and seasonality profile for Haiti informed by monthly case counts from 771 health facilities reporting from across the country throughout the 6-year period from January 2014 to December 2019. To this end, a novel hierarchical Bayesian modelling framework was developed in which a latent, pixel-level incidence surface with spatio-temporal innovations is linked to the observed case data via a flexible catchment sub-model designed to account for the absence of data on case household locations. These maps have focussed the delivery of indoor residual spraying and focal mass drug administration in the Grand'Anse Department in South-Western Haiti.


Sujet(s)
Maladies endémiques , Paludisme/épidémiologie , Saisons , Antipaludiques/usage thérapeutique , Théorème de Bayes , 2435 , Maladies endémiques/prévention et contrôle , Haïti/épidémiologie , Humains , Incidence , Paludisme/diagnostic , Paludisme/prévention et contrôle , Modèles statistiques , Lutte contre les moustiques , Analyse spatio-temporelle , Facteurs temps
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE