Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Alzheimers Res Ther ; 16(1): 186, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39160628

RÉSUMÉ

BACKGROUND: Plasma p-tau217 has emerged as the most promising blood-based marker (BBM) for the detection of Alzheimer Disease (AD) pathology, yet few studies have evaluated plasma p-tau217 performance in memory clinic settings. We examined the performance of plasma p-tau217 for the detection of AD using a high-sensitivity immunoassay in individuals undergoing diagnostic lumbar puncture (LP). METHODS: Paired plasma and cerebrospinal fluid (CSF) samples were analysed from the TIMC-BRAiN cohort. Amyloid (Aß) and Tau (T) pathology were classified based on established cut-offs for CSF Aß42 and CSF p-tau181 respectively. High-sensitivity electrochemiluminescence (ECL) immunoassays were performed on paired plasma/CSF samples for p-tau217, p-tau181, Glial Fibrillary Acidic Protein (GFAP), Neurofilament Light (NfL) and total tau (t-tau). Biomarker performance was evaluated using Receiver-Operating Curve (ROC) and Area-Under-the-Curve (AUC) analysis. RESULTS: Of 108 participants (age: 69 ± 6.5 years; 54.6% female) with paired samples obtained at time of LP, 64.8% (n = 70/108) had Aß pathology detected (35 with Mild Cognitive Impairment and 35 with mild dementia). Plasma p-tau217 was over three-fold higher in Aß + (12.4 pg/mL; 7.3-19.2 pg/mL) vs. Aß- participants (3.7 pg/mL; 2.8-4.1 pg/mL; Mann-Whitney U = 230, p < 0.001). Plasma p-tau217 exhibited excellent performance for the detection of Aß pathology (AUC: 0.91; 95% Confidence Interval [95% CI]: 0.86-0.97)-greater than for T pathology (AUC: 0.83; 95% CI: 0.75-0.90; z = 1.75, p = 0.04). Plasma p-tau217 outperformed plasma p-tau181 for the detection of Aß pathology (z = 3.24, p < 0.001). Of the other BBMs, only plasma GFAP significantly differed by Aß status which significantly correlated with plasma p-tau217 in Aß + (but not in Aß-) individuals. Application of a two-point threshold at 95% and 97.5% sensitivities & specificities may have enabled avoidance of LP in 58-68% of cases. CONCLUSIONS: Plasma p-tau217 measured using a high-sensitivity ECL immunoassay demonstrated excellent performance for detection of Aß pathology in a real-world memory clinic cohort. Moving forward, clinical use of plasma p-tau217 to detect AD pathology may substantially reduce need for confirmatory diagnostic testing for AD pathology with diagnostic LP in specialist memory services.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Marqueurs biologiques , Protéines tau , Humains , Protéines tau/sang , Protéines tau/liquide cérébrospinal , Femelle , Peptides bêta-amyloïdes/sang , Peptides bêta-amyloïdes/liquide cérébrospinal , Mâle , Sujet âgé , Marqueurs biologiques/sang , Marqueurs biologiques/liquide cérébrospinal , Maladie d'Alzheimer/sang , Maladie d'Alzheimer/diagnostic , Maladie d'Alzheimer/liquide cérébrospinal , Dosage immunologique/méthodes , Adulte d'âge moyen , Études de cohortes , Mesures de luminescence/méthodes
2.
BMJ Open ; 13(12): e077772, 2023 12 09.
Article de Anglais | MEDLINE | ID: mdl-38070888

RÉSUMÉ

INTRODUCTION: Alzheimer's disease and other dementias affect >50 million individuals globally and are characterised by broad clinical and biological heterogeneity. Cohort and biobank studies have played a critical role in advancing the understanding of disease pathophysiology and in identifying novel diagnostic and treatment approaches. However, further discovery and validation cohorts are required to clarify the real-world utility of new biomarkers, facilitate research into the development of novel therapies and advance our understanding of the clinical heterogeneity and pathobiology of neurodegenerative diseases. METHODS AND ANALYSIS: The Tallaght University Hospital Institute for Memory and Cognition Biobank for Research in Ageing and Neurodegeneration (TIMC-BRAiN) will recruit 1000 individuals over 5 years. Participants, who are undergoing diagnostic workup in the TIMC Memory Assessment and Support Service (TIMC-MASS), will opt to donate clinical data and biological samples to a biobank. All participants will complete a detailed clinical, neuropsychological and dementia severity assessment (including Addenbrooke's Cognitive Assessment, Repeatable Battery for Assessment of Neuropsychological Status, Clinical Dementia Rating Scale). Participants undergoing venepuncture/lumbar puncture as part of the clinical workup will be offered the opportunity to donate additional blood (serum/plasma/whole blood) and cerebrospinal fluid samples for longitudinal storage in the TIMC-BRAiN biobank. Participants are followed at 18-month intervals for repeat clinical and cognitive assessments. Anonymised clinical data and biological samples will be stored securely in a central repository and used to facilitate future studies concerned with advancing the diagnosis and treatment of neurodegenerative diseases. ETHICS AND DISSEMINATION: Ethical approval has been granted by the St. James's Hospital/Tallaght University Hospital Joint Research Ethics Committee (Project ID: 2159), which operates in compliance with the European Communities (Clinical Trials on Medicinal Products for Human Use) Regulations 2004 and ICH Good Clinical Practice Guidelines. Findings using TIMC-BRAiN will be published in a timely and open-access fashion.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Maladies neurodégénératives , Humains , Biobanques , Maladie d'Alzheimer/diagnostic , Vieillissement , Cognition , Maladies neurodégénératives/diagnostic , Hôpitaux , Dysfonctionnement cognitif/diagnostic
3.
J Neurotrauma ; 39(19-20): 1429-1441, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-35593008

RÉSUMÉ

Severe traumatic brain injury (TBI) results in cognitive dysfunction in part due to vascular perturbations. In contrast, the long-term vasculo-cognitive pathophysiology of mild TBI (mTBI) remains unknown. We evaluated mTBI effects on chronic cognitive and cerebrovascular function and assessed their interrelationships. Sprague-Dawley rats received midline fluid percussion injury (n = 20) or sham (n = 21). Cognitive function was assessed (3- and 6-month novel object recognition [NOR], novel object location [NOL], and temporal order object recognition [TOR]). Six-month cerebral blood flow (CBF) and cerebral blood volume (CBV) using contrast magnetic resonance imaging (MRI) and ex vivo circle of Willis artery endothelial and smooth muscle-dependent function were measured. mTBI rats showed significantly impaired NOR, with similar trends (non-significant) in NOL/TOR. Regional CBF and CBV were similar in sham and mTBI. NOR correlated with CBF in lateral hippocampus, medial hippocampus, and primary somatosensory barrel cortex, whereas it inversely correlated with arterial smooth muscle-dependent dilation. Six-month baseline endothelial and smooth muscle-dependent arterial function were similar among mTBI and sham, but post-angiotensin 2 stimulation, mTBI showed no change in smooth muscle-dependent dilation from baseline response, unlike the reduction in sham. mTBI led to chronic cognitive dysfunction and altered angiotensin 2-stimulated smooth muscle-dependent vasoreactivity. The findings of persistent pathophysiological consequences of mTBI in this animal model add to the broader understanding of chronic pathophysiological sequelae in human mild TBI.


Sujet(s)
Commotion de l'encéphale , Circulation cérébrovasculaire , Cognition , Animaux , Humains , Rats , Angiotensines , Commotion de l'encéphale/complications , Commotion de l'encéphale/anatomopathologie , Rat Sprague-Dawley
4.
BMC Genomics ; 18(1): 107, 2017 01 26.
Article de Anglais | MEDLINE | ID: mdl-28122508

RÉSUMÉ

BACKGROUND: Quiescent cells have a low level of gene activity compared to growing cells. Using a yeast model for cellular quiescence, we defined the genome-wide profiles of three species of histone methylation associated with active transcription between growing and quiescent cells, and correlated these profiles with the presence of RNA polymerase II and transcripts. RESULTS: Quiescent cells retained histone methylations normally associated with transcriptionally active chromatin and had many transcripts in common with growing cells. Quiescent cells also contained significant levels of RNA polymerase II, but only low levels of the canonical initiating and elongating forms of the polymerase. The RNA polymerase II associated with genes in quiescent cells displayed a distinct occupancy profile compared to its pattern of occupancy across genes in actively growing cells. Although transcription is generally repressed in quiescent cells, analysis of individual genes identified a period of active transcription during the development of quiescence. CONCLUSIONS: The data suggest that the transcript profile and histone methylation marks in quiescent cells were established both in growing cells and during the development of quiescence and then retained in these cells. Together, this might ensure that quiescent cells can rapidly adapt to a changing environment to resume growth.


Sujet(s)
Régulation de l'expression des gènes fongiques , Histone/métabolisme , Phase G0/génétique , Transcriptome , Levures/génétique , Étude d'association pangénomique , Génomique/méthodes , Méthylation , Mutation , Liaison aux protéines , RNA polymerase II/métabolisme , Levures/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE