Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Anal Chem ; 96(10): 4314-4321, 2024 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-38415347

RÉSUMÉ

Pathogen detection is growing in importance in the early stages of bacterial infection and treatment due to the significant morbidity and mortality associated with bloodstream infections. Although various diagnostic approaches for pathogen detection have been proposed, most of them are time-consuming, with insufficient sensitivity and limited specificity and multiplexing capability for clinical use. Here, we report a force-encoding DNA nanomachine for simultaneous and high-throughput detection of multiple pathogens in blood through force-induced remnant magnetization spectroscopy (FIRMS). The force-encoding DNA nanomachines coupled with DNA walkers enable analytical sensitivity down to a single bacterium via a cascade signal amplification strategy. More importantly, it allows for rapid and specific profiling of various pathogens directly in blood samples, without being affected by factors such as light color and solution properties. We expect that this magnetic sensing platform holds great promise for various applications in biomedical research and clinical diagnostics.


Sujet(s)
Infections bactériennes , Techniques de biocapteur , Sepsie , Humains , ADN , Bactéries/génétique
3.
Anal Chem ; 94(25): 8992-8998, 2022 06 28.
Article de Anglais | MEDLINE | ID: mdl-35713197

RÉSUMÉ

Multiplexed simultaneous detection of various cancer markers is required for accurate diagnosis and treatment of early cancer. In this work, we present a force-coded strategy for the simultaneous detection of tumor-related proteins with tunable dynamic range via magnetic sensing. The multiplexing capability of this method is achieved by designing DNA devices that can recognize different biomarkers and code them with different binding forces measured by the force-induced remnant magnetization spectroscopy, which is not influenced by the color of the light and the solution. Moreover, the force-coded assay with high sensitivity and adjustable detection range is robust, which could be used for practical biological applications such as magnetic sensing, handheld miniaturized systems, and potential in vivo diagnosis.


Sujet(s)
Techniques de biocapteur , Tumeurs , Marqueurs biologiques , Techniques de biocapteur/méthodes , ADN/composition chimique , Humains , Tumeurs/diagnostic , Protéines
4.
Nanoscale ; 12(27): 14573-14580, 2020 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-32613995

RÉSUMÉ

Cell mechanics is a crucial indicator of cell function and health, controlling important biological activities such as cell adhesion, migration, and differentiation, wound healing, and tissue integrity. Particularly, the adhesion of cancer cells to the extracellular matrix significantly contributes to cancer progression and metastasis. Here we develop magnetic nanoparticle-based force-induced remnant magnetization spectroscopy (FIRMS) as a novel method to measure cell adhesion force. Before FIRMS experiments, interactions of magnetic nanoparticles (MNPs) with cells were investigated from a cell mechanics perspective. Subsequently adhesion force for three commonly used cancer cell lines was quantified by FIRMS. Our results indicated that the application of MNPs produced indistinguishable effects on cell viability and cell mechanical properties under experimental conditions for the FIRMS method. Then cell adhesion force was obtained, which provides force information on different cancer cell types. Our work demonstrates that MNP-based FIRMS can be applied to probe cell adhesion force and offer an alternate means for understanding cell mechanics.


Sujet(s)
Nanoparticules de magnétite , Adhérence cellulaire , Matrice extracellulaire , Magnétisme , Analyse spectrale
5.
Small ; 15(15): e1900427, 2019 04.
Article de Anglais | MEDLINE | ID: mdl-30844151

RÉSUMÉ

Micro-/nanomotors are widely used in micro-/nanoprocessing, cargo transportation, and other microscale tasks because of their ability to move independently. Many biological hybrid motors based on bacteria have been developed. Magnetotactic bacteria (MTB) have been employed as motors in biological systems because of their good biocompatibility and magnetotactic motion in magnetic fields. However, the magnetotaxis of MTB is difficult to control due to the lack of effective methods. Herein, a strategy that enables control over the motion of MTB is presented. By depositing synthetic Fe3 O4 magnetic nanoparticles on the surface of MTB, semiartificial magnetotactic bacteria (SAMTB) are produced. The overall magnetic properties of SAMTB, including saturation magnetization, residual magnetization, and blocking temperature, are regulated in a multivariate and multilevel fashion, thus regulating the magnetic sensitivity of SAMTB. This strategy provides a feasible method to manoeuvre MTB for applications in complex fluid environments, such as magnetic drug release systems and real-time tracking systems. Furthermore, this concept and methodology provide a paradigm for controlling the mobility of micro-/nanomotors based on natural small organisms.


Sujet(s)
Magnétisme , Nanoparticules de magnétite/composition chimique , Magnetospirillum/physiologie , Nanoparticules de magnétite/ultrastructure , Magnétosomes/ultrastructure , Spectrophotométrie
6.
J Am Chem Soc ; 141(8): 3366-3370, 2019 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-30739439

RÉSUMÉ

Exchange coupled bimagnetic core/shell nanoparticles are promising for emerging multiferroic and spintronic technologies compared with traditional, single-phase materials, as they deliver numerous appealing effects, such as large exchange bias, tailored coercivities, and tunable blocking temperatures. However, it remains a challenge to manipulate their magnetic properties via exchange coupling due to the lack of a straightforward method that enables the general preparation of desired composites. Here we report a robust and general one-pot approach for the synthesis of different kinds of bimagnetic core/shell nanostructures (BMCS NSs). The formation of highly crystalline and monodisperse BMCS NSs adopted a self-adaptive sequential growth, circumventing the employment of complex temperature control and elaborate seeded growth techniques. As a result of large lattice misfit, the presence of interfacial imperfections as an extra source of anisotropy induced diverse exchange coupling interactions in ferro-ferrimagnetic and ferro-antiferromagnetic systems, which had great effects on the improvement of the magnetic properties of BMCS NSs. We envision that this new strategy will open up exciting opportunities toward large-scalable production of such high-quality BMCS NSs, thereby greatly potentiating the prospective applications of nanomagnetic materials.

7.
Nanoscale ; 11(16): 7648-7655, 2019 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-30720812

RÉSUMÉ

The first stage of biofilm-associated infections is commonly caused by initial adhesion of bacteria to intravascular tubes, catheters and other medical devices. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance, which has made infections difficult to eradicate. It is crucial to develop advanced strategies to inhibit biofilm formation, avoiding the emergence of antibiotic resistance. Previously, it has been reported that substrate stiffness plays an important role in the initial attachment of bacteria. However, the mechanism of how the stiffness modulates the initial adhesion of bacteria remains unclear. Here, we developed magnetic nanoprobe-based force-induced remnant magnetization spectroscopy (FIRMS) as a new platform to measure the adhesion force of bacteria. Through examining the initial adhesion force and the adhesive protein, fibronectin-binding protein (FnBP), of Staphylococcus aureus (S. aureus), we found that the increase of the substrate stiffness promoted the expression of FnBP, thus enhancing the initial adhesion force of bacteria. Following the formation of initial adhesion, the substrates with soft stiffness delayed the biofilm formation, whereas those with moderate stiffness showed preferential promotion of the biofilm formation. We expect this versatile platform to be beneficial to the study of adhesion behaviors of bacteria that sheds light on the design of new medical materials to treat microbial infections.


Sujet(s)
Adhérence bactérienne , Nanoparticules de magnétite/composition chimique , Staphylococcus aureus/physiologie , Adhésines bactériennes/composition chimique , Adhésines bactériennes/métabolisme , Biofilms/croissance et développement , Microscopie à force atomique , Microscopie de fluorescence
8.
Chemistry ; 25(12): 2978-2982, 2019 Feb 26.
Article de Anglais | MEDLINE | ID: mdl-30600858

RÉSUMÉ

Multivalent interactions occur throughout biology, and have a number of characteristics that monovalent interactions do not. However, it remains challenging to directly measure the binding force of molecular multivalent interactions and identify the mechanism of interactions. In this study, the specific interaction between bivalent aptamer and thrombin has been measured directly and quantitatively by force-induced remnant magnetization spectroscopy to investigate the binding force and through-bond effects of the multivalent interactions. The measured differential binding forces enable through-bond effects in thrombin-aptamer complexes to be identified, where aptamer binding at exosite II produces visible effects on their binding at exosite I and vice versa. This method might be suitable for practical applications in the design of high-performance ligands.

9.
Anal Chim Acta ; 1045: 1-9, 2019 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-30454563

RÉSUMÉ

Mechanical biosensors can be used to quantitatively explore DNA-protein binding mechanisms by detecting targets at low concentrations or measuring force in single-molecule force spectroscopy. However, restrictions in single-molecule manipulation and labelling protocols have hindered the application for bulk analysis of label-free protein detection. Here, we present the integration of molecular force measurement and finely tunable detection of label-free proteins into one mechanical sensor. Regulatory-sequence force spectroscopy was obtained to investigate the binding force of DNA G-quadruplexes (GQ) and label-free protein. The dual control of regulatory sequences and mechanical forces induces the structure switching from DNA duplex to GQ/protein complex. It exhibits a synergistic effect, enabling the rational fine-tuning of the dynamic range for biosensing protein concentrations over eight orders of magnitude. Furthermore, this method was exploited to estimate the stability of the human telomeric DNA GQ by Ku protein and ligand methylpyridostatin. The results revealed that human telomeric GQ has two different binding sites for Ku protein and ligand. Force spectroscopy integrating label-free force measurement and tunable target detection holds great promise for use in biosensing, drug screening, targeted therapies, DNA nanotechnology, and fields in which GQ are of rapidly increasing importance.


Sujet(s)
Techniques de biocapteur , ADN/composition chimique , G-quadruplexes , Protéines/analyse , Évaluation préclinique de médicament , Humains , Phénomènes mécaniques , Nanotechnologie , Télomère/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...