Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Glia ; 71(3): 560-570, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-36336959

RÉSUMÉ

ADGRG1 (also called GPR56) plays critical roles in brain development and wiring, including cortical lamination, central nervous system (CNS) myelination, and developmental synaptic refinement. However, the underlying mechanism(s) in mediating such diverse functions is not fully understood. Here, we investigate the function of one specific alternative splicing isoform, the GPR56 splice variant 4 (S4), to test the hypothesis that alternative splicing variants of GPR56 in part support its different functions. We created a new transgenic mouse line, Gpr56∆S4 , using CRISPR/Cas9, in which GPR56 S4 was deleted. Detailed phenotype analyses show that Gpr56∆S4 mice manifest no deficits in cortical architecture and CNS myelination compared to controls. Excitingly, they present significantly increased synapse densities, decreased synapse engulfment by microglia, and impaired eye-segregation. Taken together, our findings support that the GPR56 S4 variant is dispensable for cortical development and CNS myelination but is essential for microglia-mediated synaptic pruning.


Sujet(s)
Microglie , Récepteurs couplés aux protéines G , Souris , Animaux , Récepteurs couplés aux protéines G/génétique , Souris transgéniques , Isoformes de protéines , Synapses
2.
Sci Adv ; 8(18): eabm2545, 2022 05 06.
Article de Anglais | MEDLINE | ID: mdl-35544642

RÉSUMÉ

Parvalbumin-positive (PV+) interneurons play a critical role in maintaining circuit rhythm in the brain, and their reduction is implicated in autism spectrum disorders. Animal studies demonstrate that maternal immune activation (MIA) leads to reduced PV+ interneurons in the somatosensory cortex and autism-like behaviors. However, the underlying molecular mechanisms remain largely unknown. Here, we show that MIA down-regulates microglial Gpr56 expression in fetal brains in an interleukin-17a-dependent manner and that conditional deletion of microglial Gpr56 [Gpr56 conditional knockout (cKO)] mimics MIA-induced PV+ interneuron defects and autism-like behaviors in offspring. We further demonstrate that elevated microglial tumor necrosis factor-α expression is the underlying mechanism by which MIA and Gpr56 cKO impair interneuron generation. Genetically restoring Gpr56 expression in microglia ameliorates PV+ interneuron deficits and autism-like behaviors in MIA offspring. Together, our study demonstrates that microglial GPR56 plays an important role in PV+ interneuron development and serves as a salient target of MIA-induced neurodevelopmental disorders.


Sujet(s)
Trouble du spectre autistique , Trouble autistique , Animaux , Trouble du spectre autistique/génétique , Trouble du spectre autistique/métabolisme , Trouble autistique/métabolisme , Modèles animaux de maladie humaine , Interneurones/métabolisme , Microglie/métabolisme , Parvalbumines/métabolisme
3.
EMBO J ; 40(21): e107915, 2021 11 02.
Article de Anglais | MEDLINE | ID: mdl-34585770

RÉSUMÉ

Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an "eat me" signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.


Sujet(s)
Protéines membranaires/génétique , Microglie/effets des médicaments et des substances chimiques , Neurones/effets des médicaments et des substances chimiques , Phosphatidylsérine/pharmacologie , Récepteurs couplés aux protéines G/génétique , Synapses/effets des médicaments et des substances chimiques , Animaux , Régulation de l'expression des gènes , Gènes rapporteurs , Protéines luminescentes/génétique , Protéines luminescentes/métabolisme , Mâle , Protéines membranaires/antagonistes et inhibiteurs , Protéines membranaires/métabolisme , Souris , Souris de lignée C57BL , Souris transgéniques , Microglie/cytologie , Microglie/métabolisme , Plasticité neuronale , Neurones/cytologie , Neurones/métabolisme , Phosphatidylsérine/métabolisme , Petit ARN interférent/génétique , Petit ARN interférent/métabolisme , Récepteurs couplés aux protéines G/métabolisme , Synapses/génétique , Synapses/métabolisme , Transmission synaptique , Synaptosomes/effets des médicaments et des substances chimiques , Synaptosomes/métabolisme , Transporteur vésiculaire-2 du glutamate ,
4.
Cereb Cortex ; 31(7): 3194-3212, 2021 06 10.
Article de Anglais | MEDLINE | ID: mdl-33675359

RÉSUMÉ

Thalamocortical neurons (TCNs) play a critical role in the maintenance of thalamocortical oscillations, dysregulation of which can result in certain types of seizures. Precise control over firing rates of TCNs is foundational to these oscillations, yet the transcriptional mechanisms that constrain these firing rates remain elusive. We hypothesized that Shox2 is a transcriptional regulator of ion channels important for TCN function and that loss of Shox2 alters firing frequency and activity, ultimately perturbing thalamocortical oscillations into an epilepsy-prone state. In this study, we used RNA sequencing and quantitative PCR of control and Shox2 knockout mice to determine Shox2-affected genes and revealed a network of ion channel genes important for neuronal firing properties. Protein regulation was confirmed by Western blotting, and electrophysiological recordings showed that Shox2 KO impacted the firing properties of a subpopulation of TCNs. Computational modeling showed that disruption of these conductances in a manner similar to Shox2's effects modulated frequency of oscillations and could convert sleep spindles to near spike and wave activity, which are a hallmark for absence epilepsy. Finally, Shox2 KO mice were more susceptible to pilocarpine-induced seizures. Overall, these results reveal Shox2 as a transcription factor important for TCN function in adult mouse thalamus.


Sujet(s)
Potentiels d'action/physiologie , Cortex cérébral/métabolisme , Protéines à homéodomaine/biosynthèse , Neurones/métabolisme , Crises épileptiques/métabolisme , Thalamus/métabolisme , Animaux , Protéines à homéodomaine/génétique , Canaux ioniques/biosynthèse , Canaux ioniques/génétique , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Souris transgéniques , Réseau nerveux/métabolisme , Crises épileptiques/génétique , Crises épileptiques/prévention et contrôle , Facteurs de transcription/biosynthèse , Facteurs de transcription/génétique
5.
Glia ; 69(2): 413-423, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-32902916

RÉSUMÉ

Myelination of axons in the central nervous system (CNS) is a concerted effort between many cell types, resulting in significant cross-talk and communication among cells. Adhesion G protein-coupled receptor ADGRG1 (GPR56) is expressed in all major glial cells and regulates a wide variety of physiological processes by mediating cell-cell and cell-matrix communications. Previous literature has demonstrated the requirement of ADGRG1 in oligodendrocyte precursor cells (OPCs) during developmental myelination. However, it is unknown if ADGRG1 is responsible for myelin formation in a cell-type-specific manner. To that end, here we profiled myelin status in response to deletion of Adgrg1 specifically in OPCs, microglia, astrocytes, and neurons. Interestingly, we find that knocking out Adgrg1 in OPCs significantly decreases OPC proliferation and reduced number of myelinated axons. However, deleting Adgrg1 in microglia, astrocytes, and neurons does not impact developmental myelination. These data support an autonomous functional role for Adgrg1 in OPCs related to myelination.


Sujet(s)
Système nerveux central , Animaux , Souris , Souris knockout , Gaine de myéline , Oligodendroglie , Récepteurs couplés aux protéines G/génétique
6.
EMBO J ; 39(16): e104136, 2020 08 17.
Article de Anglais | MEDLINE | ID: mdl-32452062

RÉSUMÉ

Developmental synaptic remodeling is important for the formation of precise neural circuitry, and its disruption has been linked to neurodevelopmental disorders such as autism and schizophrenia. Microglia prune synapses, but integration of this synapse pruning with overlapping and concurrent neurodevelopmental processes, remains elusive. Adhesion G protein-coupled receptor ADGRG1/GPR56 controls multiple aspects of brain development in a cell type-specific manner: In neural progenitor cells, GPR56 regulates cortical lamination, whereas in oligodendrocyte progenitor cells, GPR56 controls developmental myelination and myelin repair. Here, we show that microglial GPR56 maintains appropriate synaptic numbers in several brain regions in a time- and circuit-dependent fashion. Phosphatidylserine (PS) on presynaptic elements binds GPR56 in a domain-specific manner, and microglia-specific deletion of Gpr56 leads to increased synapses as a result of reduced microglial engulfment of PS+ presynaptic inputs. Remarkably, a particular alternatively spliced isoform of GPR56 is selectively required for microglia-mediated synaptic pruning. Our present data provide a ligand- and isoform-specific mechanism underlying microglial GPR56-mediated synapse pruning in the context of complex neurodevelopmental processes.


Sujet(s)
Épissage alternatif , Microglie/métabolisme , Phosphatidylsérine/métabolisme , Récepteurs couplés aux protéines G/métabolisme , Synapses/métabolisme , Animaux , Souris , Souris transgéniques , Microglie/cytologie , Phosphatidylsérine/génétique , Liaison aux protéines , Isoformes de protéines , Récepteurs couplés aux protéines G/génétique , Synapses/génétique
7.
Cell Rep ; 29(13): 4349-4361.e4, 2019 12 24.
Article de Anglais | MEDLINE | ID: mdl-31875545

RÉSUMÉ

In addition to their support role in neurotransmitter and ion buffering, astrocytes directly regulate neurotransmission at synapses via local bidirectional signaling with neurons. Here, we reveal a form of neuronal-astrocytic signaling that transmits retrograde dendritic signals to distal upstream neurons in order to activate recurrent synaptic circuits. Norepinephrine activates α1 adrenoreceptors in hypothalamic corticotropin-releasing hormone (CRH) neurons to stimulate dendritic release, which triggers an astrocytic calcium response and release of ATP; ATP stimulates action potentials in upstream glutamate and GABA neurons to activate recurrent excitatory and inhibitory synaptic circuits to the CRH neurons. Thus, norepinephrine activates a retrograde signaling mechanism in CRH neurons that engages astrocytes in order to extend dendritic volume transmission to reach distal presynaptic glutamate and GABA neurons, thereby amplifying volume transmission mediated by dendritic release.


Sujet(s)
Agonistes alpha-adrénergiques/pharmacologie , Astrocytes/effets des médicaments et des substances chimiques , Dendrites/effets des médicaments et des substances chimiques , Neurones GABAergiques/effets des médicaments et des substances chimiques , Norépinéphrine/pharmacologie , Transmission synaptique/effets des médicaments et des substances chimiques , Potentiels d'action/effets des médicaments et des substances chimiques , Potentiels d'action/physiologie , Animaux , Astrocytes/métabolisme , Astrocytes/ultrastructure , Communication cellulaire , Channelrhodopsines/génétique , Channelrhodopsines/métabolisme , Corticolibérine/génétique , Corticolibérine/métabolisme , Dendrites/métabolisme , Dendrites/ultrastructure , Neurones GABAergiques/métabolisme , Neurones GABAergiques/ultrastructure , Régulation de l'expression des gènes , Acide glutamique/métabolisme , Acide glutamique/pharmacologie , Hypothalamus/effets des médicaments et des substances chimiques , Hypothalamus/métabolisme , Hypothalamus/ultrastructure , Mâle , Souris , Souris transgéniques , Microtomie , Récepteur corticotrophine/génétique , Récepteur corticotrophine/métabolisme , Synapses/effets des médicaments et des substances chimiques , Synapses/physiologie , Transmission synaptique/physiologie , Techniques de culture de tissus , Acide gamma-amino-butyrique/métabolisme , Acide gamma-amino-butyrique/pharmacologie
8.
Commun Biol ; 1: 82, 2018.
Article de Anglais | MEDLINE | ID: mdl-30271963

RÉSUMÉ

Previous genomic studies in humans indicate that SIRT1, a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, is involved in anxiety and depression, but the mechanisms are unclear. We previously showed that SIRT1 is highly activated in the nuclear fraction of the dentate gyrus of the chronically stressed animals and inhibits memory formation and increases anhedonic behavior during chronic stress, but specific functional targets of cytoplasmic SIRT1 are unknown. Here, we demonstrate that SIRT1 activity rapidly modulates intrinsic and synaptic properties of the dentate gyrus granule cells and anxiety behaviors through deacetylation of BK channel α subunits in control animals. Chronic stress decreases BKα channel membrane expression, and SIRT1 activity has no rapid effects on synaptic transmission or intrinsic properties in the chronically stressed animal. These results suggest SIRT1 activity rapidly modulates the physiological function of the dentate gyrus, and this modulation participates in the maladaptive stress response.

9.
Development ; 143(14): 2548-60, 2016 07 15.
Article de Anglais | MEDLINE | ID: mdl-27287812

RÉSUMÉ

Vertebrate appendage patterning is programmed by Hox-TALE factor-bound regulatory elements. However, it remains unclear which cell lineages are commissioned by Hox-TALE factors to generate regional specific patterns and whether other Hox-TALE co-factors exist. In this study, we investigated the transcriptional mechanisms controlled by the Shox2 transcriptional regulator in limb patterning. Harnessing an osteogenic lineage-specific Shox2 inactivation approach we show that despite widespread Shox2 expression in multiple cell lineages, lack of the stylopod observed upon Shox2 deficiency is a specific result of Shox2 loss of function in the osteogenic lineage. ChIP-Seq revealed robust interaction of Shox2 with cis-regulatory enhancers clustering around skeletogenic genes that are also bound by Hox-TALE factors, supporting a lineage autonomous function of Shox2 in osteogenic lineage fate determination and skeleton patterning. Pbx ChIP-Seq further allowed the genome-wide identification of cis-regulatory modules exhibiting co-occupancy of Pbx, Meis and Shox2 transcriptional regulators. Integrative analysis of ChIP-Seq and RNA-Seq data and transgenic enhancer assays indicate that Shox2 patterns the stylopod as a repressor via interaction with enhancers active in the proximal limb mesenchyme and antagonizes the repressive function of TALE factors in osteogenesis.


Sujet(s)
Plan d'organisation du corps , Membres/embryologie , Protéines à homéodomaine/métabolisme , Ostéogenèse , Animaux , Séquence nucléotidique , Sites de fixation/génétique , Plan d'organisation du corps/génétique , Lignage cellulaire , Sous-unité alpha 1 du facteur CBF/métabolisme , Éléments activateurs (génétique) , Délétion de gène , Régulation de l'expression des gènes au cours du développement , Génome , Protéines à homéodomaine/génétique , Cellules souches mésenchymateuses/cytologie , Cellules souches mésenchymateuses/métabolisme , Souris , Modèles biologiques , Motifs nucléotidiques/génétique , Ostéogenèse/génétique , Liaison aux protéines
10.
J Physiol ; 594(13): 3729-44, 2016 07 01.
Article de Anglais | MEDLINE | ID: mdl-27146976

RÉSUMÉ

KEY POINTS: Synaptic excitation and inhibition must be properly balanced in individual neurons and neuronal networks to allow proper brain function. Disrupting this balance may lead to autism spectral disorders and epilepsy. We show the basic helix-loop-helix transcription factor NeuroD2 promotes inhibitory synaptic drive but also decreases cell-intrinsic neuronal excitability of cortical pyramidal neurons both in vitro and in vivo. We identify two genes potentially downstream of NeuroD2-mediated transcription that regulate these parameters: gastrin-releasing peptide and the small conductance, calcium-activated potassium channel, SK2. Our results reveal an important function for NeuroD2 in balancing synaptic neurotransmission and intrinsic excitability. Our results offer insight into how synaptic innervation and intrinsic excitability are coordinated during cortical development. ABSTRACT: Synaptic excitation and inhibition must be properly balanced in individual neurons and neuronal networks for proper brain function. Disruption of this balance during development may lead to autism spectral disorders and epilepsy. Synaptic excitation is counterbalanced by synaptic inhibition but also by attenuation of cell-intrinsic neuronal excitability. To maintain proper excitation levels during development, neurons must sense activity over time and regulate the expression of genes that control these parameters. While this is a critical process, little is known about the transcription factors involved in coordinating gene expression to control excitatory/inhibitory synaptic balance. We show here that the basic helix-loop-helix transcription factor NeuroD2 promotes inhibitory synaptic drive but also decreases cell-intrinsic neuronal excitability of cortical pyramidal neurons both in vitro and in vivo as shown by ex vivo analysis of a NeuroD2 knockout mouse. Using microarray analysis and comparing wild-type and NeuroD2 knockout cortical networks, we identified two potential gene targets of NeuroD2 that contribute to these processes: gastrin-releasing peptide (GRP) and the small conductance, calcium-activated potassium channel, SK2. We found that the GRP receptor antagonist RC-3059 and the SK2 specific blocker apamin partially reversed the effects of increased NeuroD2 expression on inhibitory synaptic drive and action potential repolarization, respectively. Our results reveal an important function for NeuroD2 in balancing synaptic neurotransmission and intrinsic excitability and offer insight into how these processes are coordinated during cortical development.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice/physiologie , Neuropeptides/physiologie , Cellules pyramidales/physiologie , Cortex somatosensoriel/physiologie , Synapses/physiologie , Animaux , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Cellules cultivées , Peptide libérant la gastrine/génétique , Potentiels post-synaptiques inhibiteurs , Souris knockout , Neuropeptides/génétique , Rats , Canaux potassiques calcium-dépendants de petite conductance/génétique
11.
Development ; 142(14): 2521-32, 2015 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-26138475

RÉSUMÉ

In humans, atrial fibrillation is often triggered by ectopic pacemaking activity in the myocardium sleeves of the pulmonary vein (PV) and systemic venous return. The genetic programs that abnormally reinforce pacemaker properties at these sites and how this relates to normal sinoatrial node (SAN) development remain uncharacterized. It was noted previously that Nkx2-5, which is expressed in the PV myocardium and reinforces a chamber-like myocardial identity in the PV, is lacking in the SAN. Here we present evidence that in mice Shox2 antagonizes the transcriptional output of Nkx2-5 in the PV myocardium and in a functional Nkx2-5(+) domain within the SAN to determine cell fate. Shox2 deletion in the Nkx2-5(+) domain of the SAN caused sick sinus syndrome, associated with the loss of the pacemaker program. Explanted Shox2(+) cells from the embryonic PV myocardium exhibited pacemaker characteristics including node-like electrophysiological properties and the capability to pace surrounding Shox2(-) cells. Shox2 deletion led to Hcn4 ablation in the developing PV myocardium. Nkx2-5 hypomorphism rescued the requirement for Shox2 for the expression of genes essential for SAN development in Shox2 mutants. Similarly, the pacemaker-like phenotype induced in the PV myocardium in Nkx2-5 hypomorphs reverted back to a working myocardial phenotype when Shox2 was simultaneously deleted. A similar mechanism is also adopted in differentiated embryoid bodies. We found that Shox2 interacts with Nkx2-5 directly, and discovered a substantial genome-wide co-occupancy of Shox2, Nkx2-5 and Tbx5, further supporting a pivotal role for Shox2 in the core myogenic program orchestrating venous pole and pacemaker development.


Sujet(s)
Protéines à homéodomaine/physiologie , Myocarde/métabolisme , Myocytes cardiaques/métabolisme , Veines pulmonaires/métabolisme , Noeud sinuatrial/métabolisme , Facteurs de transcription/physiologie , Animaux , Horloges biologiques , Différenciation cellulaire , Lignage cellulaire , Séparation cellulaire , Électrocardiographie , Corps embryoïdes/métabolisme , Cytométrie en flux , Régulation de l'expression des gènes au cours du développement , Génome , Coeur/embryologie , Protéine homéotique Nkx-2.5 , Protéines à homéodomaine/métabolisme , Humains , Souris , Souris transgéniques , Phénotype , Structure tertiaire des protéines , Protéines à domaine boîte-T/métabolisme
12.
J Biol Chem ; 290(4): 2007-23, 2015 Jan 23.
Article de Anglais | MEDLINE | ID: mdl-25488669

RÉSUMÉ

The atrioventricular (AV) junction plays a critical role in chamber septation and transmission of cardiac conduction pulses. It consists of structures that develop from embryonic dorsal mesenchymal protrusion (DMP) and the embryonic AV canal. Despite extensive studies on AV junction development, the genetic regulation of DMP development remains poorly understood. In this study we present evidence that Shox2 is expressed in the developing DMP. Intriguingly, this Shox2-expressing domain possesses a pacemaker-specific genetic profile including Hcn4 and Tbx3. This genetic profile leads to nodal-like electrophysiological properties, which is gradually silenced as the AV node becomes matured. Phenotypic analyses of Shox2(-/-) mice revealed a hypoplastic and defectively differentiated DMP, likely attributed to increased apoptosis, accompanied by dramatically reduced expression of Bmp4 and Hcn4, ectopic activation of Cx40, and an aberrant pattern of action potentials. Interestingly, conditional deletion of Bmp4 or inhibition of BMP signaling by overexpression of Noggin using a Shox2-Cre allele led to a similar DMP hypoplasia and down-regulation of Hcn4, whereas activation of a transgenic Bmp4 allele in Shox2(-/-) background attenuated DMP defects. Moreover, the lack of Hcn4 expression in the DMP of mice carrying Smad4 conditional deletion and direct binding of pSmad1/5/8 to the Hcn4 regulatory region further confirm the Shox2-BMP genetic cascade in the regulation of DMP development. Our results reveal that Shox2 regulates DMP fate and development by controlling BMP signaling through the Smad-dependent pathway to drive tissue growth and to induce Hcn4 expression and suggest a temporal pacemaking function for the DMP during early cardiogenesis.


Sujet(s)
Horloges biologiques , Protéines morphogénétiques osseuses/métabolisme , Régulation de l'expression des gènes au cours du développement , Coeur/embryologie , Protéines à homéodomaine/métabolisme , Potentiels d'action , Allèles , Animaux , Apoptose , Protéine morphogénétique osseuse de type 4/génétique , Différenciation cellulaire , Électrophysiologie , Femelle , Septum du coeur/embryologie , Protéines à homéodomaine/génétique , Canaux contrôlés par les nucléotides cycliques et activés par l'hyperpolarisation/génétique , Canaux contrôlés par les nucléotides cycliques et activés par l'hyperpolarisation/métabolisme , Mésoderme/métabolisme , Souris , Souris transgéniques , Phénotype , Transduction du signal
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...