Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 136
Filtrer
1.
Drugs R D ; 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38949758

RÉSUMÉ

BACKGROUND: Vupanorsen is a GalNAc3-conjugated antisense oligonucleotide targeting angiopoietin-like 3 (ANGPTL3) mRNA shown to reduce atherogenic lipoproteins in individuals with dyslipidemia. OBJECTIVES: The aim of this study was to satisfy Chinese regulatory requirements and support ethnic sensitivity assessment by evaluating pharmacokinetics (PK), pharmacodynamics (PD), and safety of vupanorsen in healthy Chinese adults with elevated triglycerides (TG). METHODS: In this phase I, parallel-cohort, open-label study, 18 Chinese adults with elevated fasting TG (≥ 90 mg/dL) were randomized 1:1 to receive a single subcutaneous dose of vupanorsen 80 mg or 160 mg. PK parameters, PD markers (including ANGPTL3, TG, non-high-density lipoprotein cholesterol [non-HDL-C]), and safety were assessed. RESULTS: Absorption of vupanorsen was rapid (median time to maximum concentration [Tmax]: 2.0 h for both doses), followed by a multiphasic decline (mean terminal half-life 475.9 [80 mg] and 465.2 h [160 mg]). Exposure (area under curve [AUC] and maximum plasma concentration [Cmax]) generally increased in a greater than dose-proportional manner from 80 mg to 160 mg. Time-dependent reductions in ANGPTL3 and lipid parameters were observed. Mean percentage change from baseline for the 80-mg and 160-mg doses, respectively, were - 59.7% and - 69.5% for ANGPTL3, - 41.9% and - 52.5% for TG, and - 23.2% and - 25.4% for non-HDL-C. No serious or severe adverse events (AEs), deaths, or discontinuations due to AEs were reported. Three participants experienced treatment-related AEs; all were mild and resolved by end of study. CONCLUSIONS: This study provided the first clinical vupanorsen data in China. In Chinese participants with elevated TG, PK and PD parameters were consistent with those reported previously in non-Chinese participants, including in Japanese individuals. No safety concerns were noted. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04916795.

2.
J Control Release ; 371: 516-529, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38849095

RÉSUMÉ

Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.


Sujet(s)
Administration par voie cutanée , Techniques de transfert de gènes , Humains , Animaux , Thérapie génétique/méthodes , Peau/métabolisme , Systèmes de délivrance de médicaments
3.
Diabetes ; 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38857114

RÉSUMÉ

Insulin replacement therapy is indispensable in the treatment of type 1 and advanced type 2 diabetes. However, insulin's clinical application is challenging due to its narrow therapeutic index. To mitigate acute and chronic risks of glucose excursions, glucose-responsive insulin (GRI) has long been pursued for clinical application. By integrating with glucose-sensitive elements, GRI is capable of releasing or activating insulin in response to plasma or interstitial glucose levels without external monitoring, therefore improving glycemic control and reducing hypoglycemic risk. In this perspective, first we introduce the history of GRI development, followed by a review of major glucose-responsive components which can be leveraged to control insulin delivery. Subsequently, we highlight the recent advances in glucose-responsive insulin delivery carriers and insulin analogs. Finally, we provide a look to the future and the challenges of clinical application of GRI.

4.
Adv Mater ; : e2401667, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38843541

RÉSUMÉ

The efficacy of adoptive T cell therapy (ACT) for the treatment of solid tumors remains challenging. In addition to the poor infiltration of effector T (Teff) cells limited by the physical barrier surrounding the solid tumor, another major obstacle is the extensive infiltration of regulatory T (Treg) cells, a major immunosuppressive immune cell subset, in the tumor microenvironment. Here, this work develops a grooved microneedle patch for augmenting ACT, aiming to simultaneously overcome physical and immunosuppressive barriers. The microneedles are engineered through an ice-templated method to generate the grooved structure for sufficient T-cell loading. In addition, with the surface modification of chemokine CCL22, the MNs could not only directly deliver tumor-specific T cells into solid tumors through physical penetration, but also specifically divert Treg cells from the tumor microenvironment to the surface of the microneedles via a cytokine concentration gradient, leading to an increase in the ratio of Teff cells/Treg cells in a mouse melanoma model. Consequently, this local delivery strategy of both T cell receptor T cells and chimeric antigen receptor T cells via the CCL22-modified grooved microneedles as a local niche could significantly enhance the antitumor efficacy and reduce the on-target off-tumor toxicity of ACT.

5.
Angew Chem Int Ed Engl ; : e202403541, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38885002

RÉSUMÉ

The exploration of cell-based drug delivery systems for cancer therapy has gained growing attention. Approaches to engineering therapeutic cells with multidrug loading in an effective, safe, and precise manner while preserving their inherent biological properties remain of great interest. Here, we report a strategy to simultaneously load multiple drugs in platelets in a one-step fusion process. We demonstrate doxorubicin (DOX)-encapsulated liposomes conjugated with interleukin-15 (IL-15) could fuse with platelets to achieve both cytoplasmic drug loading and surface cytokine modification with a loading efficiency of over 70 % within minutes. Due to their inherent targeting ability to metastatic cancers and postoperative bleeding sites, the engineered platelets demonstrated a synergistic therapeutic effect to suppress lung metastasis and postoperative recurrence in mouse B16F10 melanoma tumor models.

6.
Antimicrob Agents Chemother ; : e0156323, 2024 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-38647294

RÉSUMÉ

EVER206 (also known as SPR206) is a novel polymyxin analog that has shown in vitro potency and in vivo efficacy against multidrug-resistant (MDR) Gram-negative pathogens. This randomized, double-blinded, placebo-controlled, Phase I study evaluated the safety, tolerability, and pharmacokinetics of EVER206 in healthy Chinese subjects. After single administration of 50-300 mg EVER206, the Cmax ranged from 3.94 to 25.82 mg/L, and the AUC0-inf ranged from 12.42 to 101.67 h·mg/L. The plasma exposure displayed a linear relationship with the dose administered. After administration of 75 and 100 mg of EVER206 every 8 hours (q8 hour), a steady state was achieved on Day 2. The accumulation ratios of Cmax and AUC from Day 1 to Day 7 were in the range of 1.12 to 1.3. The elimination half-lives ranged from 2.86 to 4.32 hours in the single-ascending-dose (SAD) study and 4.71 to 6.18 hours in the multiple-ascending-dose (MAD) study. The urinary excretion of unchanged EVER206 increased with the dose, with the mean cumulative fraction ranging from 23.70% to 47.10%. EVER206 was safe and well-tolerated in Chinese healthy subjects. No severe treatment emerging adverse events (TEAEs), serious adverse events, or TEAEs leading to discontinuation were reported. The results of the present study demonstrated a similar safety profile of EVER206 with data reported in an earlier study on SPR206-101. The exposure of EVER206 in Chinese healthy subjects was higher than that in Australian healthy subjects. These results could enable further clinical development of EVER206 in Chinese patients with severe MDR Gram-negative pathogen infections.CLINICAL TRIALSThis study was registered at the Chinese Clinical Trial Registry under identifier ChiCTR2200056692.

7.
Sci Bull (Beijing) ; 69(9): 1286-1301, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38519399

RÉSUMÉ

Adavosertib (ADA) is a WEE1 inhibitor that exhibits a synthetic lethal effect on p53-mutated gallbladder cancer (GBC). However, drug resistance due to DNA damage response compensation pathways and high toxicity limits further applications. Herein, estrone-targeted ADA-encapsulated metal-organic frameworks (ADA@MOF-EPL) for GBC synthetic lethal treatment by inducing conditional factors are developed. The high expression of estrogen receptors in GBC enables ADA@MOF-EPL to quickly enter and accumulate near the cell nucleus through estrone-mediated endocytosis and release ADA to inhibit WEE1 upon entering the acidic tumor microenvironment. Ultrasound irradiation induces ADA@MOF-EPL to generate reactive oxygen species (ROS), which leads to a further increase in DNA damage, resulting in a higher sensitivity of p53-mutated cancer cells to WEE1 inhibitor and promoting cell death via conditional synthetic lethality. The conditional factor induced by ADA@MOF-EPL further enhances the antitumor efficacy while significantly reducing systemic toxicity. Moreover, ADA@MOF-EPL demonstrates similar antitumor abilities in other p53-mutated solid tumors, revealing its potential as a broad-spectrum antitumor drug.


Sujet(s)
Antinéoplasiques , Tumeurs de la vésicule biliaire , Réseaux organométalliques , Protein-tyrosine kinases , Pyrimidinones , Protéine p53 suppresseur de tumeur , Réseaux organométalliques/composition chimique , Réseaux organométalliques/pharmacologie , Tumeurs de la vésicule biliaire/traitement médicamenteux , Tumeurs de la vésicule biliaire/génétique , Tumeurs de la vésicule biliaire/anatomopathologie , Humains , Protéine p53 suppresseur de tumeur/génétique , Protéine p53 suppresseur de tumeur/métabolisme , Animaux , Lignée cellulaire tumorale , Protein-tyrosine kinases/antagonistes et inhibiteurs , Souris , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Antinéoplasiques/composition chimique , Pyrazoles/pharmacologie , Pyrazoles/usage thérapeutique , Protéines du cycle cellulaire/antagonistes et inhibiteurs , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Mutations synthétiques létales , Espèces réactives de l'oxygène/métabolisme , Tests d'activité antitumorale sur modèle de xénogreffe , Mutation , Souris nude , Altération de l'ADN/effets des médicaments et des substances chimiques , Femelle
8.
PLoS One ; 19(2): e0296940, 2024.
Article de Anglais | MEDLINE | ID: mdl-38306390

RÉSUMÉ

Mesalazine is a well-established treatment for ulcerative colitis by oral or topical administration. However, the pharmacokinetic (PK) and safety profiles of mesalazine administered by an enema has not been clarified in Chinese population. We conducted an open-label study to assess the PK and safety profiles of mesalazine in 11 healthy Chinese subjects after receiving mesalazine enema (1 g/100 mL) once daily for 7 consecutive days. Blood and urine samples were collected for assay of mesalazine and N-acetyl mesalazine by liquid chromatography-tandem mass spectrometry. The PK and safety data were summarized using descriptive statistics. The mean (standard deviation) maximum plasma concentration (Cmax), area under plasma drug concentration-time curve from time 0 to the last measurable plasma concentration time point (AUC0-t) and elimination half-life (t1/2) of mesalazine were 1007.64 (369.00) ng/mL, 9608.59 (3533.08) h·ng/mL and 3.33 (1.99) h, respectively after the first dose administration. In multiple-dose study, the estimated accumulation factor of mesalazine was 1.09. The cumulative urinary excretion rate of parent and major metabolite of mesalazine was 27.77%. After the last doe administration, 2.21% of the administered dose was excreted as mesalazine and 24.47% as N-acetyl mesalazine in urine within 24 h. Overall, 9 adverse events (AEs) were reported in 4 of the 11 subjects (36.4%), including oral ulcer, toothache, upper respiratory tract infection (1 each) and laboratory abnormalities (6 cases). All AEs were mild and recovered spontaneously without treatment, and were not considered as related to mesalazine. Mesalazine enema (1 g/100 mL) was safe and well tolerated in healthy Chinese subjects. These findings support further clinical trials in Chinese patients. Trial registration: This trial was registered to Chinese Clinical Trial Registry (ChiCTR) at https://www.chictr.org.cn (registration number: ChiCTR2300073148).


Sujet(s)
Mésalazine , Spectrométrie de masse en tandem , Humains , Administration par voie orale , Aire sous la courbe , Chine , Chromatographie en phase liquide , Relation dose-effet des médicaments , Volontaires sains , Mésalazine/effets indésirables , Spectrométrie de masse en tandem/méthodes
9.
Antimicrob Agents Chemother ; 68(1): e0133023, 2024 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-38054726

RÉSUMÉ

FL058 is a novel diazabicyclooctane ß-lactamase inhibitor. This first-in-human study evaluated the safety, tolerability, and population pharmacokinetic (PK)/pharmacodynamic target attainment analysis of FL058 alone and in combination with meropenem in healthy subjects. The results showed that the maximum tolerated dose of FL058 was 3,000 mg after single-dose infusion. FL058 in combination with meropenem did not cause any grade 3 or higher adverse event when the dose was escalated up to 1,000 mg/2,000 mg. FL058 exposure PK parameters showed dose proportionality. FL058 was excreted primarily in urine. No significant PK interaction was found between FL058 and meropenem. Population PK model analysis indicated that the PK profiles of FL058 and meropenem were consistent with the two-compartment model. The impact of covariates, creatinine clearance, concomitant use of meropenem, body weight, sex, and FL058 dose, on FL058 exposure was less than 10%. FL058/meropenem combination was safe and well tolerated up to a 1,000-mg/2,000-mg dose in healthy adults. The recommended minimum dose of FL058/meropenem combination was 500 mg/1,000 mg by intravenous infusion over 2 h every 8 h based on target attainment analysis. The good safety, tolerability, and satisfactory PK profiles of FL058 alone and in combination with meropenem in this first-in-human study will support further clinical development of FL058 in combination with meropenem in patients with target infections (ClinicalTrials.gov identifiers: NCT05055687, NCT05058118, and NCT05058105).


Sujet(s)
Antibactériens , Inhibiteurs des bêta-lactamases , Adulte , Humains , Méropénème/pharmacologie , Antibactériens/pharmacocinétique , Volontaires sains , Inhibiteurs des bêta-lactamases/effets indésirables , Perfusions veineuses
10.
Adv Sci (Weinh) ; 11(8): e2304124, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37899686

RÉSUMÉ

Microneedles have emerged as a promising platform for transdermal drug delivery with prominent advantages, such as enhanced permeability, mitigated pain, and improved patient adherence. While microneedles have primarily been employed for delivering small molecules, nucleic acids, peptides, and proteins, recent researches have demonstrated their prospect in combination with cell therapy. Cell therapy involving administration or transplantation of living cells (e.g. T cells, stem cells, and pancreatic cells) has gained significant attention in preclinical and clinical applications for various disease treatments. However, the effectiveness of systemic cell delivery may be restricted in localized conditions like solid tumors and skin disorders due to limited penetration and accumulation into the lesions. In this perspective, an overview of recent advances in microneedle-assisted cell delivery for immunotherapy, tissue regeneration, and hormone modulation, with respect to their mechanical property, cell loading capacity, as well as viability and bioactivity of the loaded cells is provided. Potential challenges and future perspectives with microneedle-mediated cell therapy are also discussed.


Sujet(s)
Systèmes de délivrance de médicaments , Aiguilles , Humains , Administration par voie cutanée , Systèmes de délivrance de médicaments/méthodes , Microinjections/méthodes , Protéines
11.
Int J Antimicrob Agents ; 63(2): 107075, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38157918

RÉSUMÉ

INTRODUCTION: 9MW1411 is a humanised monoclonal antibody against Staphylococcus aureus alpha-toxin. The safety, pharmacokinetics (PK) and immunogenicity of 9MW1411 should be characterised in humans before further clinical development. METHODS: A single-centre, randomised, double-blind, placebo-controlled phase I clinical study was conducted in humans for the first time. A total of 42 healthy Chinese subjects were randomised to receive a single ascending dose of 9MW1411 (200, 600, 1500, 3000 or 5000 mg) or placebo. Safety, PK parameters and anti-drug antibody (ADA) were analysed. Monte Carlo simulations (MCS) were performed to predict the probability of target attainment (PTA) after single dose IV administration of 1500, 3000 and 5000 mg of 9MW1411. RESULTS: Thirty-four subjects received 9MW1411, completed the study and were included in data analysis. Five cases of drug-related AEs occurred in four subjects. All the adverse events (AEs) were mild or moderate. The Cmax, AUC0-t and AUC0-∞ of 9MW1411 increased with dose after IV administration of 200 to 5000 mg 9MW1411. The mean Cmax increased from 85.40 ± 5.43 to 2082.11 ± 343.10 µg/mL and AUC0-∞ from 29,511.68 ± 5550.91 to 729,985.49 ± 124,932.18 h·µg/mL. The elimination half-life (T1/2) was 19-23 days. 9MW1411 ADA was positive in three subjects. MCS indicated that a single dose of 3000 or 5000 mg 9MW1411 could achieve PTA > 90% for S. aureus. CONCLUSIONS: 9MW1411 has shown a good safety profile in healthy Chinese subjects after a single dose up to 5000 mg. A single dose of 3000 mg 9MW1411 is appropriate for use in subsequent studies.


Sujet(s)
Anticorps monoclonaux humanisés , Staphylococcus aureus , Humains , Anticorps monoclonaux humanisés/effets indésirables , Méthode en double aveugle , Volontaires sains , Chine , Aire sous la courbe
12.
Bioact Mater ; 33: 377-395, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38059121

RÉSUMÉ

Chimeric antigen receptor T cell denoted as CAR-T therapy has realized incredible therapeutic advancements for B cell malignancy treatment. However, its therapeutic validity has yet to be successfully achieved in solid tumors. Different from hematological cancers, solid tumors are characterized by dysregulated blood vessels, dense extracellular matrix, and filled with immunosuppressive signals, which together result in CAR-T cells' insufficient infiltration and rapid dysfunction. The insufficient recognition of tumor cells and tumor heterogeneity eventually causes cancer reoccurrences. In addition, CAR-T therapy also raises safety concerns, including potential cytokine release storm, on-target/off-tumor toxicities, and neuro-system side effects. Here we comprehensively review various targeting aspects, including CAR-T cell design, tumor modulation, and delivery strategy. We believe it is essential to rationally design a combinatory CAR-T therapy via constructing optimized CAR-T cells, directly manipulating tumor tissue microenvironments, and selecting the most suitable delivery strategy to achieve the optimal outcome in both safety and efficacy.

13.
Nat Commun ; 14(1): 6953, 2023 10 31.
Article de Anglais | MEDLINE | ID: mdl-37907476

RÉSUMÉ

Immune checkpoints play key roles in maintaining self-tolerance. Targeted potentiation of the checkpoint molecule PD-L1 through in situ manipulation offers clinical promise for patients with autoimmune diseases. However, the therapeutic effects of these approaches are often compromised by limited specificity and inadequate expression. Here, we report a two-step dual-anchor coupling strategy for enhanced immobilization of PD-L1 on target endogenous cells by integrating bioorthogonal chemistry and physical insertion of the cell membrane. In both type 1 diabetes and rheumatoid arthritis mouse models, we demonstrate that this approach leads to elevated and sustained conjugation of PD-L1 on target cells, resulting in significant suppression of autoreactive immune cell activation, recruitment of regulatory T cells, and systematic reshaping of the immune environment. Furthermore, it restores glucose homeostasis in type 1 diabetic mice for over 100 days. This specific in situ bioengineering approach potentiates the functions of PD-L1 and represents its translational potential.


Sujet(s)
Polyarthrite rhumatoïde , Maladies auto-immunes , Diabète expérimental , Diabète de type 1 , Humains , Souris , Animaux , Antigène CD274/métabolisme , Maladies auto-immunes/thérapie , Diabète de type 1/thérapie
14.
Nat Commun ; 14(1): 5699, 2023 09 14.
Article de Anglais | MEDLINE | ID: mdl-37709778

RÉSUMÉ

Phototherapy of deep tumors still suffers from many obstacles, such as limited near-infrared (NIR) tissue penetration depth and low accumulation efficiency within the target sites. Herein, stimuli-sensitive tumor-targeted photodynamic nanoparticles (STPNs) with persistent luminescence for the treatment of deep tumors are reported. Purpurin 18 (Pu18), a porphyrin derivative, is utilized as a photosensitizer to produce persistent luminescence in STPNs, while lanthanide-doped upconversion nanoparticles (UCNPs) exhibit bioimaging properties and possess high photostability that can enhance photosensitizer efficacy. STPNs are initially stimulated by NIR irradiation before intravenous administration and accumulate at the tumor site to enter the cells through the HER2 receptor. Due to Pu18 afterglow luminescence properties, STPNs can continuously generate ROS to inhibit NFκB nuclear translocation, leading to tumor cell apoptosis. Moreover, STPNs can be used for diagnostic purposes through MRI and intraoperative NIR navigation. STPNs exceptional antitumor properties combined the advantages of UCNPs and persistent luminescence, representing a promising phototherapeutic strategy for deep tumors.


Sujet(s)
Épithélioma in situ , Tumeurs de la vésicule biliaire , Nanoparticules , Photothérapie dynamique , Humains , Photosensibilisants/pharmacologie , Photosensibilisants/usage thérapeutique , Luminescence
15.
Antibiotics (Basel) ; 12(9)2023 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-37760689

RÉSUMÉ

This study aimed to explore the pharmacokinetics (PK) and safety of oral (PO) and intravenous (IV) lefamulin in healthy Chinese subjects and to evaluate the efficacy of the intravenous administration regimen using pharmacokinetic/pharmacodynamic (PK/PD) analysis. This study was a randomized, open-label, single- and multiple-dose, intravenous and oral administration study. PK parameters were calculated, and the probability of target attainment (PTA) and the cumulative fraction of response (CFR) after IV administration of lefamulin 150 mg 1 h q12 h were analyzed with Monte Carlo simulations. Lefamulin exhibited extensive distribution. The mean steady-state AUC0-24 h of 150 mg lefamulin IV and 600 mg lefamulin PO were 10.03 and 13.96 µg·h/mL, respectively. For Streptococcus pneumoniae and Staphylococcus aureus, based on the free-drug AUC over MIC ratio (fAUC/MIC) target of 1-log10 cfu reduction, the PK/PD breakpoints were 0.25 and 0.125 mg/L, respectively. The CFR was over 90% for both types of strains with 95% protein binding rate, suggesting that the regimen was microbiologically effective. Lefamulin was safe and well-tolerated. The PK of lefamulin in healthy Chinese subjects were consistent with that in foreign countries. Lefamulin demonstrated the microbiological effectiveness against Streptococcus pneumoniae and Staphylococcus aureus.

16.
Nano Lett ; 23(18): 8593-8601, 2023 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-37625135

RÉSUMÉ

Despite the great progress of current bacterially based biotherapeutics, their unsatisfying efficacy and underlying safety problems have limited their clinical application. Herein, inspired by probiotic Escherichia coli strain Nissle 1917, probiotic-derived outer membrane vesicles (OMVs) are found to serve as an effective therapeutic platform for the treatment of inflammatory bowel disease (IBD). To further enhance the therapeutic effect, the probiotic-derived OMV-encapsulating manganese dioxide nanozymes are constructed, named nanoprobiotics, which can adhere to inflamed colonic epithelium and eliminate intestinal excess reactive oxygen species in the murine IBD model. Moreover, combined with the anti-inflammatory medicine metformin, nanoprobiotics could further remold the pro-inflammatory microenvironment, improve the overall richness and diversity of the gut microbiota, and exhibit better therapeutic efficacy than commercial IBD chemotherapeutics. Importantly, insignificant overt systemic toxicity in this treatment was observed. By integrating cytokine storm calm with biotherapy, we develop a safe and effective bionanoplatform for the effective treatment of inflammation-mediated intestinal diseases.

17.
Adv Mater ; 35(45): e2304582, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37547966

RÉSUMÉ

Subcutaneous (SC) injection is a common administration route for rapid and efficient delivery of biotherapeutics. However, syringe-based injections usually require professional assistance and are associated with pain and potential risks of infections, thus leading to undesired patient compliance and poor life quality. Herein, this work presents an ultrarapid-acting microneedle (URA-MN) patch for immediate transdermal delivery of therapeutics in a minimally invasive manner. Effervescent agents are incorporated into the tip of URA-MN for rapid generation of CO2 bubbles upon insertion into the skin, immediately powering the biotherapeutics release within a few minutes. The release kinetics of diverse agents including liraglutide (LRT), insulin, and heparin from the URA-MN patches are evaluated in three different mouse models, and the rapid release of biotherapeutics and potent therapeutic effects are achieved with only 5 min administration. Noteworthily, attributed to the short application duration and negligible residuals of MN matrix remaining in the skin, the URA-MN patch shows desirable biocompatibility after six-week administration.


Sujet(s)
Systèmes de délivrance de médicaments , Peau , Animaux , Souris , Humains , Administration par voie cutanée , Insuline/usage thérapeutique
18.
Nat Commun ; 14(1): 3431, 2023 06 10.
Article de Anglais | MEDLINE | ID: mdl-37301874

RÉSUMÉ

Effective reprogramming of chronic wound healing remains challenging due to the limited drug delivery efficacy hindered by physiological barriers, as well as the inappropriate dosing timing in distinct healing stages. Herein, a core-shell structured microneedle array patch with programmed functions (PF-MNs) is designed to dynamically modulate the wound immune microenvironment according to the varied healing phases. Specifically, PF-MNs combat multidrug-resistant bacterial biofilm at the early stage via generating reactive oxygen species (ROS) under laser irradiation. Subsequently, the ROS-sensitive MN shell gradually degrades to expose the MN core component, which neutralizes various inflammatory factors and promotes the phase transition from inflammation to proliferation. In addition, the released verteporfin inhibits scar formation by blocking Engrailed-1 (En1) activation in fibroblasts. Our experiments demonstrate that PF-MNs promote scarless wound repair in mouse models of both acute and chronic wounds, and inhibit the formation of hypertrophic scar in rabbit ear models.


Sujet(s)
Cicatrice hypertrophique , Cicatrisation de plaie , Souris , Animaux , Lapins , Cicatrisation de plaie/physiologie , Peau/anatomopathologie , Espèces réactives de l'oxygène/métabolisme , Cicatrice hypertrophique/anatomopathologie , Fibroblastes/métabolisme
19.
Expert Opin Investig Drugs ; 32(7): 669-675, 2023.
Article de Anglais | MEDLINE | ID: mdl-37358916

RÉSUMÉ

BACKGROUND: Interleukin (IL) 23p19 monoclonal antibodies were efficacious and safe in the treatment of psoriasis. A first-in-human (FIH) study was conducted to evaluate the safety, tolerability, pharmacokinetics (PK) and immunogenicity of IBI112, a novel IL-23p19 monoclonal antibody. METHODS: In this FIH, randomized, double-blind, placebo-controlled, single-ascending-dose study, a subcutaneous (SC, 5-600 mg) or intravenous (IV, 100 and 600 mg) or placebo was administered to eligible healthy subjects. Safety was assessed by physical examinations, vital signs, laboratory tests, and electrocardiograms. Furthermore, non-compartment analysis and population PK modeling were conducted to characterize PK, and model-based simulation was applied to justify dose selection for psoriasis patients. RESULTS: A total of 46 subjects were enrolled, with 35 receiving IBI112 and 11 receiving placebo. No serious adverse events (SAEs) and no clinically significant adverse events were identified. After a single SC of IBI112, the median Tmax was 4-10.5 days, and the half-life (t1/2) ranged from 21.8 to 35.8 days. IBI112 exposures (Cmax and AUCinf) approached dose proportionality across 5-300 mg range. CONCLUSION: IBI112 was well tolerated and safe at SC or IV dose up to 600 mg and showed a linear PK characteristics at SC dose from 5 to 300 mg. CLINICAL TRIAL REGISTRATION: ClinicalTrial.gov NCT04511624.


Sujet(s)
Anticorps monoclonaux , Psoriasis , Humains , Anticorps monoclonaux/pharmacocinétique , Relation dose-effet des médicaments , Méthode en double aveugle , Peuples d'Asie de l'Est , Interleukine-23 , Sous-unité p19 de l'interleukine-23 , Psoriasis/traitement médicamenteux
20.
Sci Adv ; 9(20): eadg6007, 2023 05 19.
Article de Anglais | MEDLINE | ID: mdl-37196084

RÉSUMÉ

Regulatory T (Treg) cells underlie multiple autoimmune disorders and potentialize an anti-inflammation treatment with adoptive cell therapy. However, systemic delivery of cellular therapeutics often lacks tissue targeting and accumulation for localized autoimmune diseases. Besides, the instability and plasticity of Treg cells also induce phenotype transition and functional loss, impeding clinical translation. Here, we developed a perforated microneedle (PMN) with favorable mechanical performance and a spacious encapsulation cavity to support cell survival, as well as tunable channels to facilitate cell migration for local Treg therapy of psoriasis. In addition, the enzyme-degradable microneedle matrix could release fatty acid in the hyperinflammatory area of psoriasis, enhancing the Treg suppressive functions via the fatty acid oxidation (FAO)-mediated metabolic intervention. Treg cells administered through PMN substantially ameliorated psoriasis syndrome with the assistance of fatty acid-mediated metabolic intervention in a psoriasis mouse model. This tailorable PMN could offer a transformative platform for local cell therapy to treat a variety of diseases.


Sujet(s)
Maladies auto-immunes , Psoriasis , Souris , Animaux , Lymphocytes T régulateurs , Psoriasis/thérapie , Maladies auto-immunes/métabolisme , Modèles animaux de maladie humaine
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...