Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Plant Biotechnol J ; 22(5): 1417-1432, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38193234

RÉSUMÉ

Root architecture and function are critical for plants to secure water and nutrient supply from the soil, but environmental stresses alter root development. The phytohormone jasmonic acid (JA) regulates plant growth and responses to wounding and other stresses, but its role in root development for adaptation to environmental challenges had not been well investigated. We discovered a novel JA Upregulated Protein 1 gene (JAUP1) that has recently evolved in rice and is specific to modern rice accessions. JAUP1 regulates a self-perpetuating feed-forward loop to activate the expression of genes involved in JA biosynthesis and signalling that confers tolerance to abiotic stresses and regulates auxin-dependent root development. Ectopic expression of JAUP1 alleviates abscisic acid- and salt-mediated suppression of lateral root (LR) growth. JAUP1 is primarily expressed in the root cap and epidermal cells (EPCs) that protect the meristematic stem cells and emerging LRs. Wound-activated JA/JAUP1 signalling promotes crosstalk between the root cap of LR and parental root EPCs, as well as induces cell wall remodelling in EPCs overlaying the emerging LR, thereby facilitating LR emergence even under ABA-suppressive conditions. Elevated expression of JAUP1 in transgenic rice or natural rice accessions enhances abiotic stress tolerance and reduces grain yield loss under a limited water supply. We reveal a hitherto unappreciated role for wound-induced JA in LR development under abiotic stress and suggest that JAUP1 can be used in biotechnology and as a molecular marker for breeding rice adapted to extreme environmental challenges and for the conservation of water resources.


Sujet(s)
Cyclopentanes , Oryza , Oxylipines , Oryza/génétique , Oryza/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Amélioration des plantes , Facteur de croissance végétal/métabolisme , Régulation de l'expression des gènes végétaux/génétique
2.
Plant Biotechnol J ; 15(7): 850-864, 2017 Jul.
Article de Anglais | MEDLINE | ID: mdl-27998028

RÉSUMÉ

A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops.


Sujet(s)
Régulation de l'expression des gènes végétaux , N-acetylgalactosaminyltransferase/génétique , Oryza/enzymologie , Oryza/génétique , Protéines végétales/génétique , Végétaux génétiquement modifiés/génétique , Expression génique ectopique/génétique , Expression génique ectopique/physiologie , Régulation de l'expression des gènes végétaux/génétique , Gibbérellines/métabolisme , Mutation/génétique , N-acetylgalactosaminyltransferase/métabolisme , Photosynthèse/génétique , Photosynthèse/physiologie , Protéines végétales/métabolisme , Végétaux génétiquement modifiés/métabolisme
3.
Plant Cell Environ ; 39(5): 998-1013, 2016 May.
Article de Anglais | MEDLINE | ID: mdl-26301381

RÉSUMÉ

Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.


Sujet(s)
Génomique/méthodes , Oryza/génétique , Recherche , Techniques de knock-out de gènes , Mutation/génétique , Génétique inverse
4.
Plant Cell ; 24(7): 2857-73, 2012 Jul.
Article de Anglais | MEDLINE | ID: mdl-22773748

RÉSUMÉ

Germination is a unique developmental transition from metabolically quiescent seed to actively growing seedling that requires an ensemble of hydrolases for coordinated nutrient mobilization to support heterotrophic growth until autotrophic photosynthesis is established. This study reveals two crucial transcription factors, MYBS1 and MYBGA, present in rice (Oryza sativa) and barley (Hordeum vulgare), that function to integrate diverse nutrient starvation and gibberellin (GA) signaling pathways during germination of cereal grains. Sugar represses but sugar starvation induces MYBS1 synthesis and its nuclear translocation. GA antagonizes sugar repression by enhancing conuclear transport of the GA-inducible MYBGA with MYBS1 and the formation of a stable bipartite MYB-DNA complex to activate the α-amylase gene. We further discovered that not only sugar but also nitrogen and phosphate starvation signals converge and interconnect with GA to promote the conuclear import of MYBS1 and MYBGA, resulting in the expression of a large set of GA-inducible but functionally distinct hydrolases, transporters, and regulators associated with mobilization of the full complement of nutrients to support active seedling growth in cereals.


Sujet(s)
Germination/physiologie , Hordeum/physiologie , Oryza/physiologie , Transduction du signal/physiologie , Facteurs de transcription/métabolisme , Transport biologique , Carbone/métabolisme , Noyau de la cellule/métabolisme , Endosperme/génétique , Endosperme/métabolisme , Endosperme/physiologie , Régulation de l'expression des gènes végétaux , Gibbérellines/métabolisme , Protéines à fluorescence verte , Hordeum/génétique , Hordeum/métabolisme , Modèles biologiques , Mutation , Azote/métabolisme , Signaux de localisation nucléaire , Oryza/génétique , Oryza/métabolisme , Phosphates/métabolisme , Facteur de croissance végétal/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Protéines de fusion recombinantes , Plant/génétique , Plant/métabolisme , Plant/physiologie , Graines/génétique , Graines/métabolisme , Graines/physiologie , Facteurs de transcription/génétique , alpha-Amylases/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE