Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.118
Filtrer
1.
Nano Lett ; 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39115228

RÉSUMÉ

The helical edge states (ESs) protected by underlying Z2 topology in two-dimensional topological insulators (TIs) arouse upsurges in saturable absorptions thanks to the strong photon-electron coupling in ESs. However, limited TIs demonstrate clear signatures of topological ESs at liquid nitrogen temperatures, hindering the applications of such exotic quantum states. Here, we demonstrate the existence of one-dimensional (1D) ESs at the step edge of the quasi-1D material Ta2NiSe7 at 78 K by scanning tunneling microscopy. Such ESs are rather robust against the irregularity of the edges, suggesting a possible topological origin. The exfoliated Ta2NiSe7 flakes were used as saturable absorbers (SAs) in an Er-doped fiber laser, hosting a mode-locked pulse with a modulation depth of up to 52.6% and a short pulse duration of 225 fs, far outstripping existing TI-based SAs. This work demonstrates the existence of robust 1D ESs and the superior SA performance of Ta2NiSe7.

2.
Angew Chem Int Ed Engl ; : e202411217, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39103975

RÉSUMÉ

Hole-transporting materials (HTMs) are crucial for obtaining the stability and high efficiency of perovskite solar cells (PSCs). However, the current state-of-the-art n-i-p PSCs relied on the use of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) exhibit inferior intrinsic and ambient stability due to the p-dopant and hydrophilic Li-TFSI additive. In this study, a new spiro-type HTM with a critical quasi-planar core (Z-W-03) is developed to improve both the thermal and ambient stability of PSCs. The results suggest that the planar carbazole structure effectively passivates the trap states compared to the triphenylamine with a propeller-like conformation in spiro-OMeTAD. This passivation effect leads to the shallower trap states when the quasi-planar HTMs interact with the Pb-dimer. Consequently, the device using Z-W-03 achieves a higher Voc of 1.178 V compared to the spiro-OMeTAD's 1.155 V, resulting in an enhanced efficiency of 24.02%. In addition, the double-column π-π stacking of Z-W-03 results in high hole mobility (~10-4 cm2 V-1 s-1) even without p-dopant. Moreover, when the surface interface is modified, the undoped Z-W-03 device can achieve an efficiency of nearly 23%. Compared to the PSCs using spiro-OMeTAD, those with Z-W-03 exhibit enhanced stability under N2 and ambient conditions.

3.
Sci Total Environ ; 950: 175273, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39111416

RÉSUMÉ

Northern peatlands are important carbon pools; however, differences in the structure and function of microbiomes inhabiting contrasting geochemical zones within these peatlands have rarely been emphasized. Using 16S rRNA gene sequencing, metagenomic profiling, and detailed geochemical analyses, we investigated the taxonomic composition and genetic potential across various geochemical zones of a typical northern peatland profile in the Changbai Mountains region (Northeastern China). Specifically, we focused on elucidating the turnover of organic carbon, sulfur (S), nitrogen (N), and methane (CH4). Three geochemical zones were identified and characterized according to porewater and solid-phase analyses: the redox interface (<10 cm), shallow peat (10-100 cm), and deep peat (>100 cm). The redox interface and upper shallow peat demonstrated a high availability of labile carbon, which decreased toward deeper peat. In deep peat, anaerobic respiration and methanogenesis were likely constrained by thermodynamics, rather than solely driven by available carbon, as the acetate concentrations reached 90 µmol·L-1. Both the microbial community composition and metabolic potentials were significantly different (p < 0.05) among the redox interface, shallow peat, and deep peat. The redox interface demonstrated a close interaction between N, S, and CH4 cycling, mainly driven by Thermodesulfovibrionia, Bradyrhizobium, and Syntrophorhabdia metagenome-assembled genomes (MAGs). The archaeal Bathyarchaeia were indicated to play a significant role in the organic carbon, N, and S cycling in shallow peat. Although constrained by anaerobic respiration and methanogenesis, deep peat exhibited a higher metabolic potential for organic carbon degradation, primarily mediated by Acidobacteriota. In terms of CH4 turnover, subsurface peat (10-20 cm) was a CH4 production hotspot, with a net turnover rate of ∼2.9 nmol·cm-3·d-1, while the acetoclastic, hydrogenotrophic, and methylotrophic methanogenic pathways all potentially contributed to CH4 production. The results of this study improve our understanding of biogeochemical cycles and CH4 turnover along peatland profiles.

4.
Article de Anglais | MEDLINE | ID: mdl-39136523

RÉSUMÉ

BACKGROUND: Radiofrequency ablation (RFA) is an effective therapy for hepatocellular carcinoma (HCC). However, incomplete radiofrequency ablation (IRFA) can promote the progression of residual cancer cells, which is a serious problem in the clinical application of RFA. Therefore, it is of great significance to explore the mechanism and countermeasures of the progression of residual tumors after IRFA. Our previous study confirmed that IRFA can activate the hypoxia/ autophagy pathway of residual tumors in mice and then induce the proliferation of residual tumor cells. Additionally, we found a metal ruthenium complex [Ru(bpy)2(ipad)](ClO4)2 (Ru, where bpy = 2,2'-bipyridine and ipad = 2-(anthracene-9,10-dione-2-yl)imidazo[4,5-f][1,10]phenanthroline) can effectively inhibit hypoxia-inducible factor (HIF-1α) and has good anti-tumor effect in a hypoxic environment; however, whether Ru could suppress the proliferation of residual tumor cells after IRFA is unknown. OBJECTIVE: This study intends to evaluate the effect of Ru in suppressing the proliferation of residual hepatocellular carcinoma after IRFA in a mice model. METHODS: The Hepa1-6 xenograft mouse model was established in C57BL/6 mice to simulate clinical IRFA. H&E staining was used to evaluate the biosafety of major organs in the treated mice. TUNEL assay was employed to assess the antitumor effect. Immunohistochemically and immunofluorescence staining was performed to detect the expression of HIF-1α and autophagy-related proteins. The ELISA assay was used to examine the cytokines of interferon-gamma (IFN-γ) and interleukin 10 (IL-10). RESULTS: Our findings revealed that the residual tumor relapsed via the HIF-1α/LC3B/P62 autophagy- related pathway after IRFA, while Ru could suppress this process. In addition, it was demonstrated that Ru could effectively activate the immune system of the mice and reverse the tumor immune suppression microenvironment after IRFA. CONCLUSION: The ruthenium complex Ru could suppress the proliferation of residual hepatocellular carcinoma cells after IRFA in the mice model. This study introduces a novel approach that combines the use of ruthenium complexes with IRFA, offering a potential solution to address the reoccurrence of residual liver cancer following IRFA in clinical settings.

5.
Chem Sci ; 15(31): 12559-12568, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39118605

RÉSUMÉ

Investigation of electron transfer (ET) between photosensitizers (PSs) and adjacent substrates in hypoxic tumors is integral to highly efficient tumor therapy. Herein, the oxygen-independent ET pathway to generate hydrogen free radicals (H˙) was established by the in situ self-assembled phototherapeutic agent d-ST under near-infrared (NIR)-light irradiation, coupled with the oxidation of reduced coenzyme NADPH, which induced ferroptosis and effectively elevated the therapeutic performance in hypoxic tumors. The higher surface energy and longer exciton lifetimes of the fine crystalline d-ST nanofibers were conducive to improving ET efficiency. In hypoxic conditions, the excited d-ST can effectively transfer electrons to water to yield H˙, during which the overexpressed NADPH with rich electrons can power the electron flow to facilitate the generation of H˙, accompanied by NADP+ formation, disrupting cellular homeostasis and triggering ferroptosis. Tumor-bearing mouse models further showed that d-ST accomplished excellent phototherapy efficacy. This work sheds light onto the versatile electron pathways between PSs and biological substrates.

6.
JRSM Open ; 15(6): 20542704231200394, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-39091433

RÉSUMÉ

Pulmonary sclerosing pneumocytoma (PSP) is a rare benign pulmonary tumour, most reported cases of PSP are from Eastern Asia, with a female to male ratio of 5:1, and average age at diagnosis in the 5th decade. We present the case of a 63-year-old Caucasian woman diagnosed with PSP who underwent a left lower lobe basal segmentectomy with systematic nodal dissection, performed via video assisted thoracic surgery (VATS).

7.
Asia Pac J Clin Nutr ; 33(3): 319-347, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38965721

RÉSUMÉ

BACKGROUND AND OBJECTIVES: This study aimed to find the optimal intervention available to both control blood glucose and improve physical function in the geriatric population with T2DM. METHODS AND STUDY DESIGN: A systemic review and network meta-analysis (NMA) was conducted to assess and rank the comparative efficacy of different interventions on glycosylated hemoglobin A1c (HbAc1), fasting blood glucose (FBG), muscle mass, grip strength, gait speed, lower body muscle strength, and dynamic balance. A total of eight databases were searched for eligible randomized controlled trials (RCTs) that the elderly aged more than 60 years or with mean age ≥ 55 years, the minimal duration of the RCT intervention was 6 weeks, and those lacking data about glycemic level and at least one indicator of physical performance were excluded. The Cochrane risk of bias tool was used to assess the bias of each study included. Bayesian NMA was performed as the main results, the Bayesian meta regression and the frequentist NMA as sensitivity analysis. RESULTS: Of the 2266 literature retrieved, 27 RCTs with a total of 2289 older adults were included. Health management provided by health workers exerts beneficial effects that is superior to other interventions at achieving glycemic control, but less marked improvement in physical performance. Exercise combined with cognitive training showed more pronounced improvement in muscle strength, gait speed, and dynamic balance, but ranked behind in decreasing the HbAc1 and FBG. CONCLUSIONS: Personalized health management combined with physical and cognitive training might be the optimal intervention to both accomplish glycemic control and improvement of physical performance. Further RCTs are needed to validate and assess the confidence of our results from this NMA.


Sujet(s)
Glycémie , Diabète de type 2 , Performance fonctionnelle physique , Humains , Diabète de type 2/thérapie , Diabète de type 2/sang , Sujet âgé , Méta-analyse en réseau , Hémoglobine glyquée/analyse , Force musculaire/physiologie , Régulation de la glycémie/méthodes , Essais contrôlés randomisés comme sujet , Exercice physique/physiologie
9.
Angew Chem Int Ed Engl ; : e202406054, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38980317

RÉSUMÉ

Electrochemical impedance spectroscopy (EIS), characterized by its non-destructive and in-situ nature, plays a crucial role in comprehending the thermodynamic and kinetic processes occurring with Li-ion batteries. However, there is a lack of consistent and coherent physical interpretations for the EIS of porous electrodes. Therefore, it is imperative to conduct thorough investigations into the underlying physical mechanisms of EIS. Herein, by employing reference electrode in batteries, we revisit the associated physical interpretation of EIS at different frequency. Combining different battery configurations, temperature-dependent experiments, and elaborated distribution of relaxation time analysis, we find that the ion transport in porous electrode channels and pseudo-capacitance behavior dominate the high-frequency and mid-frequency impedance arcs, respectively. This work offers a perspective for the physical interpretation of EIS and also sheds light on the understanding of EIS characteristics in other advanced energy storage systems.

10.
Biomed Environ Sci ; 37(6): 617-627, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38988112

RÉSUMÉ

Objective: The aim of this study was to explore the role and mechanism of ferroptosis in SiO 2-induced cardiac injury using a mouse model. Methods: Male C57BL/6 mice were intratracheally instilled with SiO 2 to create a silicosis model. Ferrostatin-1 (Fer-1) and deferoxamine (DFO) were used to suppress ferroptosis. Serum biomarkers, oxidative stress markers, histopathology, iron content, and the expression of ferroptosis-related proteins were assessed. Results: SiO 2 altered serum cardiac injury biomarkers, oxidative stress, iron accumulation, and ferroptosis markers in myocardial tissue. Fer-1 and DFO reduced lipid peroxidation and iron overload, and alleviated SiO 2-induced mitochondrial damage and myocardial injury. SiO 2 inhibited Nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant genes, while Fer-1 more potently reactivated Nrf2 compared to DFO. Conclusion: Iron overload-induced ferroptosis contributes to SiO 2-induced cardiac injury. Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO 2 cardiotoxicity, potentially via modulation of the Nrf2 pathway.


Sujet(s)
Modèles animaux de maladie humaine , Ferroptose , Surcharge en fer , Souris de lignée C57BL , Myocytes cardiaques , Silice , Silicose , Animaux , Ferroptose/effets des médicaments et des substances chimiques , Mâle , Souris , Surcharge en fer/métabolisme , Silice/toxicité , Silicose/métabolisme , Silicose/traitement médicamenteux , Silicose/anatomopathologie , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Déferoxamine/pharmacologie , Phénylènediamines/pharmacologie , Facteur-2 apparenté à NF-E2/métabolisme , Facteur-2 apparenté à NF-E2/génétique , Stress oxydatif/effets des médicaments et des substances chimiques , Fer/métabolisme , Cyclohexylamines/pharmacologie
11.
Ageing Res Rev ; 99: 102416, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39002644

RÉSUMÉ

Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.


Sujet(s)
Maladie d'Alzheimer , Diabète de type 2 , Mitochondries , Stress oxydatif , Polyphénols , Transduction du signal , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/diétothérapie , Maladie d'Alzheimer/traitement médicamenteux , Diabète de type 2/métabolisme , Diabète de type 2/diétothérapie , Stress oxydatif/effets des médicaments et des substances chimiques , Humains , Polyphénols/pharmacologie , Polyphénols/usage thérapeutique , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/physiologie , Animaux , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Phosphatidylinositol 3-kinases/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Antioxydants/usage thérapeutique
12.
Int J Biol Macromol ; 276(Pt 2): 133939, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39029827

RÉSUMÉ

Pea protein isolate (PPI) was used as a carrier matrix to load tannic acid (TA) due to its multiple cavity structures and reaction sites, after that, magnesium ion (M) was further added to form more stable carrier structures. PPI was covalently bound with TA to form TA-PPI complexes in alkaline conditions, then M induced the aggregation of TA-PPI to produce M-TA-PPI complexes. TA mainly interacted with free amino groups and sulfhydryl groups of PPI, thereby decreasing their content in complexes. TA further decreased the α-helix content and increased the ß-sheet and ß-turn content in TA-PPI complexes correspondingly, nevertheless the M would decline these changes in M-TA-PPI complexes. As a result of binding, TA and M jointly increased the average molecular size of complexes. The higher TA addition amount (10-20 mg/g PPI) was conducive to the stronger intramolecular interactions (more hydrophobic interactions and disulfide bonds), gel structure (higher hardness value) and storage modulus in M-TA-PPI gels. Compared with TA-PPI complexes, M-TA-PPI complexes showed higher stability in gastric digestion and higher TA releasement and antioxidant capacity of its digesta in intestinal digestion. This kind of metal-phenolics-protein complexes may have potentials to be a stable and efficient carrier for loading gastric sensitive polyphenols.

13.
medRxiv ; 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38946975

RÉSUMÉ

Background: Clonal hematopoiesis of indeterminate potential (CHIP) is a common inflammatory condition of aging that causes myriad end-organ damage. We have recently shown associations for CHIP with acute kidney injury and with kidney function decline in the general population, with stronger associations for CHIP driven by mutations in genes other than DNMT3A (non- DNMT3A CHIP). Longitudinal kidney function endpoints in individuals with pre-existing chronic kidney disease (CKD) and CHIP have been examined in two previous studies, which reported conflicting findings and were limited by small sample sizes. Methods: In this study, we examined the prospective associations between CHIP and CKD progression events in four cohorts of CKD patients (total N = 5,772). The primary outcome was a composite of 50% kidney function decline or kidney failure. The slope of eGFR decline was examined as a secondary outcome. Mendelian randomization techniques were then used to investigate potential causal effects of CHIP on eGFR decline. Finally, kidney function was assessed in adenine-fed CKD model mice having received a bone marrow transplant recapitulating Tet2 -CHIP compared to controls transplanted wild-type bone marrow. Results: Across all cohorts, the average age was 66.4 years, the average baseline eGFR was 42.6 ml/min/1.73m 2 , and 24% had CHIP. Upon meta-analysis, non- DNMT3A CHIP was associated with a 59% higher relative risk of incident CKD progression (HR 1.59, 95% CI: 1.02-2.47). This association was more pronounced among individuals with diabetes (HR 1.29, 95% CI: 1.03-1.62) and with baseline eGFR ≥ 30 ml/min/1.73m (HR 1.80, 95% CI: 1.11-2.90). Additionally, the annualized slope of eGFR decline was steeper among non- DNMT3A CHIP carriers, relative to non-carriers (ß -0.61 ± 0.31 ml/min/1.73m 2 , p = 0.04). Mendelian randomization analyses suggested a causal role for CHIP in eGFR decline among individuals with diabetes. In a dietary adenine mouse model of CKD, Tet2 -CHIP was associated with lower GFR as well as greater kidney inflammation, tubular injury, and tubulointerstitial fibrosis. Conclusion: Non- DNMT3A CHIP is a potentially targetable novel risk factor for CKD progression.

14.
MycoKeys ; 107: 125-139, 2024.
Article de Anglais | MEDLINE | ID: mdl-39081831

RÉSUMÉ

Alternaria species are commonly found as saprophytes, endophytes and plant pathogens. During a survey of small-spored Alternaria in China, two new species were discovered from Cucurbitaceae plants collected in Hubei and Sichuan provinces. This study identified two new species of Alternaria using seven genes (ITS, GAPDH, TEF1, RPB2, Alt a 1, EndoPG, and OPA10-2) for phylogenetic analyses and morphological characteristics. The two new species A.jingzhouensis and A.momordicae were described and illustrated. Alternariajingzhouensis sp. nov., associated with Citrulluslanatus, is characterized by producing muriform, ellipsoidal, flask-shaped, rostrate, and beaked conidia. It differs from A.koreana, A.ovoidea, and A.baoshanensis by bearing conidia in a simple conidiogenous locus with occasionally longer beaks in a chain, and from A.momordicae sp. nov. by having shorter beaks. Alternariamomordicae sp. nov. from Momordicacharantia was distinct from A.koreana, A.ovoidea, and A.baoshanensis by producing muriform, long ellipsoid or ovoid to obclavate, sometimes inverted club-shaped conidia on a single conidiogenous locus with a wider body and longer beak in a chain, and distinct from A.jingzhouensis sp. nov. by a longer beak conidia. These two species were clearly distinguished from other species in the section Alternaria based on DNA based phylogeny and morphological characteristics. The morphological features were discussed and compared to relevant species in the present paper.

15.
J Phys Chem Lett ; 15(30): 7770-7774, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39047155

RÉSUMÉ

Organic and biological materials are often chiral. Chiral polymers, as recent experiments indicate, facilitate spin-charge conversion: a charge current results in a spin polarization and vice versa, dubbed chirality-induced spin selectivity (CISS) and inverse CISS (ICISS). While CISS/ICISS in crystalline chiral systems such as tellurium can be understood in terms of their chirality- and spin-dependent band structure, such a picture becomes inapplicable to disordered chiral polymers, where carrier transport is via hopping rather than band conduction. Here, we develop a microscopic theory to describe CISS and ICISS in disordered chiral organics, in which chirality-induced geometric spin-orbit coupling leads to a purely geometric spin-dependent Berry phase in electron hops involving triads, whose orientations are dictated by the material's chirality. Our theory reveals a central role of spin-flip hopping, which suppresses CISS but enables ICISS.

16.
Chem Commun (Camb) ; 60(66): 8716-8719, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39058377

RÉSUMÉ

Herein, we firstly utilized H2@C60 to monitor the supramolecular interaction between a pH-driven resorcin[4]arene molecular tweezer and C60 with a notable 1H NMR chemical shift change (ca. 0.34 ppm). This work provides a new strategy for detecting weak or complex supramolecular interactions.

17.
Diabetes Obes Metab ; 26(9): 3880-3896, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38951947

RÉSUMÉ

AIM: To show that electroacupuncture stimulation (ES) remodels sympathetic innervation in brown adipose tissue (BAT) via the bone morphogenic protein 8B (BMP8B)-neuregulin 4 (NRG4)-ErbB4 axis, with somatotopic dependence. MATERIALS AND METHODS: We established a high-fat diet (HFD) model with C57BL/6J mice to measure the thermogenesis and metabolism of BAT. In addition, the sympathetic nerve activity (SNA) was measured with the electrophysiological technique, and the immunostaining of c-Fos was used to detect the central nervous system sources of sympathetic outflows. Finally, the key role of the BMP8B-NRG4-ErbB4 axis was verified by peripheral specific antagonism of ErbB4. RESULTS: ES at the forelimb and abdomen regions significantly up-regulate SNA, whereas ES at the hindlimb region has a limited regulatory effect on SNA but still partially restores HFD-induced BAT dysfunction. Mechanistically, ES at the forelimb and abdomen regions driving catecholaminergic signals in brown adipocytes depends on neural activities projected from the ventromedial nucleus of the hypothalamus (VMH) to the spinal cord intermediolateral column (IML). Notably, the peripheral suppression of ErbB4 in BAT inhibits the thermogenesis and metabolic function of BAT, as well as significantly hindering the SNA activation and metabolic benefits induced by ES. CONCLUSION: These results suggest that ES appears to be an effective approach for remodeling sympathetic innervation in BAT, which is closely related to neuronal activity in the VMH and the NRG4-ErbB4 signaling pathway.


Sujet(s)
Tissu adipeux brun , Alimentation riche en graisse , Électroacupuncture , Souris de lignée C57BL , Récepteur ErbB-4 , Transduction du signal , Système nerveux sympathique , Thermogenèse , Animaux , Tissu adipeux brun/métabolisme , Tissu adipeux brun/innervation , Électroacupuncture/méthodes , Souris , Transduction du signal/physiologie , Récepteur ErbB-4/métabolisme , Mâle , Système nerveux sympathique/physiologie , Thermogenèse/physiologie , Alimentation riche en graisse/effets indésirables , Neurégulines/métabolisme , Obésité/thérapie , Obésité/métabolisme , Obésité/physiopathologie
18.
Talanta ; 278: 126483, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38963977

RÉSUMÉ

Self-driven microfluidic systems have attracted significant attention and demonstrated great potential in the field of point-of-care (POC) testing due to their device simplicity, low power consumption, increased portability, and reduced sample consumption. To develop POC detection chips with diverse characteristics that meet different requirements, there is a strong demand for feasible strategies that enable easy operation and reduce processing time. Here, a one-step processing approach using femtosecond laser direct writing technology was proposed to fabricate a capillary-actuated POC microfluidic chip. The driving force of the chip is highly dependent on its surface wettability, which can be easily adjusted by changing the laser processing parameters. This POC microfluidic chip allowed for the detection of intracellular H2O2 through a catalytic reaction system that incorporated 5-aminosalicylic acid -sensitized colloidal TiO2 nanoparticles and horse radish peroxidase, with integrating semiconductor-based surface-enhanced Raman scattering (SERS) quantitative technique. The concentration of H2O2 was determined by the SERS signal of the catalytic products in the microfluidic chip, resulting in rapid detection with minimal sample consumption. Our method provides a simple, feasible, and alternative strategy for POC testing of H2O2, with a linear range of 10-2∼10-6 M and a limit of detection of 0.55 µM. This approach was successfully applied to rapid detection of intracellular H2O2 in MCF-7 breast cancer cells with high sensitivity and minimal sample consumption. Additionally, this study not only demonstrates the exceptional advantages of femtosecond laser processing technology in fabricating diverse microfluidic chips for various applications, but also presents an efficient POC testing strategy for detecting cell signaling molecules.


Sujet(s)
Peroxyde d'hydrogène , Lasers , Analyse spectrale Raman , Peroxyde d'hydrogène/composition chimique , Peroxyde d'hydrogène/analyse , Humains , Analyse spectrale Raman/méthodes , Semiconducteurs , Systèmes automatisés lit malade , Laboratoires sur puces , Limite de détection , Cellules MCF-7
19.
ACS Appl Mater Interfaces ; 16(31): 41176-41184, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39072613

RÉSUMÉ

The process development and optimization of p-type semiconductors and p-channel thin-film transistors (TFTs) are essential for the development of high-performance circuits. In this study, the Br-doped CuI (CuIBr) TFTs are proposed by the solution process to control copper vacancy generation and suppress excess holes formation in p-type CuI films and improve current modulation capabilities for CuI TFTs. The CuIBr films exhibit a uniform surface morphology and good crystalline quality. The on/off current (ION/IOFF) ratio of CuIBr TFTs increased from 103 to 106 with an increase in the Br doping ratio from 0 to 15%. Furthermore, the performance and operational stability of CuIBr TFTs are significantly enhanced by indium tin oxide (ITO) surface charge-transfer doping. The results obtained from the first-principles calculations well explain the electron-doping effect of ITO overlayer in CuIBr TFT. Eventually, the CuIBr TFT with 15% Br content exhibits a high ION/IOFF ratio of 3 × 106 and a high hole field-effect mobility (µFE) of 7.0 cm2 V-1 s-1. The band-like charge transport in CuIBr TFT is confirmed by the temperature-dependent measurement. This study paves the way for the realization of transparent complementary circuits and wearable electronics.

20.
Cureus ; 16(5): e60413, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38883037

RÉSUMÉ

Diabetic foot ulcers represent a significant complication of diabetes mellitus, characterized by mechanical changes of bony architecture often leading to chronic wounds with increased risk of infection and impaired healing. Morganella morganii, a Gram-negative bacterium, is one of the pathogens found in infected diabetic foot ulcers. It is a human gastrointestinal commensal organism that may cause widespread deadly infections. This report discusses the case of a 76-year-old male with diabetes mellitus who presented with M. morganii diabetic foot ulcer to an in-patient rehabilitation facility. Despite conventional wound care and antibiotic therapy, the ulcer failed to improve. The management approach for this patient consisted of a rehabilitation modality called Vaporox, a machine that utilizes vaporous hyperoxia therapy (VHT), as it combines ultrasonic mist and high concentration of oxygen to fasten revascularization and healing. This case highlights the potential efficacy of VHT as an adjunctive therapy for the management of diabetic foot ulcers, particularly those complicated by pathogens, such as M. morganii.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE