RÉSUMÉ
BACKGROUND: Chlorsulfuron resistance and genetic dominance was evaluated in Raphanus raphanistrum genotypes homozygous (122-RR, 376-RR), heterozygous (122-RS, 376-RS) and compound heterozygous (122-R/376-R) for the target-site resistance mutations Ala-122-Tyr and Asp-376-Glu in the AHAS (acetohydroxyacid synthase) gene. RESULTS: At the AHAS level, 122-RR and 122-RS plants exhibited significantly higher I50 values than 376-RR and 376-RS plants, respectively. However, plants of the compound heterozygous genotype (122-R/376-R), showed no difference in AHAS activity compared to the 122-RS genotype but lower activity than the 122-RR genotype, and showed a nearly 400-fold greater I50 value than both genotypes (376-RR and 376-RS) carrying the 376-Glu allele. At the whole-plant level, 100% survival was observed for 122-RR plants at the highest chlorsulfuron dose of 640 g ha-1, yet 376-RR plants showed no survival at 380 g ha-1. Thus, this survival difference resulted in different median lethal dose (LD50) estimates [>640 (122-RR) versus 330 g ha-1(376-RR)]. The effect of chlorsulfuron in reducing aboveground growth of surviving plants also was markedly lower for the homozygous 122-RR (GR50 = 566 g ha-1) than for 376-RR plants (GR50 = 66). Heterozygous plants carrying the 122-Tyr allele (122-RS) exhibited two- and five-fold higher LD50 values than both homozygous and heterozygous plants carrying the 376-Glu allele (376-RR, 376-RS), respectively. Along the difference in plant survival, 122-RS plants also showed four-fold higher GR50 than both 376-RR and 376-RS plants. Survival of plants with the compound heterozygous genotype (122-R/376-R) under increasing chlorsulfuron doses was similar to 122-RR or 122-RS genotypes. However, this compound heterozygous genotype showed two- and six-fold higher LD50 values than 376-RR or 376-RS genotypes, respectively. However, both resistance 122-Tyr and 376-Glu alleles were dominant or nearly dominant over the wild-type susceptible alleles (ALA-122 and ASP-376), and the resistance 122-Tyr allele was dominant over the 376-Glu allele. CONCLUSIONS: These results broaden our understanding of AHAS target-site resistance in R. raphanistrum and strengthens the hypothesis that the AHAS 122-Tyr allele corresponds to a stronger target-site resistance allele than the 376-Glu allele. © 2024 Society of Chemical Industry.
RÉSUMÉ
Emerging evidence demonstrates that curcumin has an inhibitory effect on non-small cell lung cancer (NSCLC), and its targets and mechanism of action need further exploration. The goal of this study was to explore the potential targets and mechanism of curcumin against NSCLC by network pharmacology, bioinformatics, and experimental validation, thereby providing more insight into combination treatment with curcumin for NSCLC in preclinical and clinical research. Curcumin targets against NSCLC were predicted based on HIT2.0, STD, CTD, and DisGeNET, and the core targets were analyzed via protein-protein interaction network construction (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and molecular docking. The gene expression levels of samples in A549 cells, NCI-H460, and curcumin treated groups were detected by real-time quantitative PCR. A total of 67 common targets between curcumin and NSCLC were collected by screening public databases. GO and KEGG analysis suggested that curcumin treatment of NSCLC mainly involves cancer-related pathways, such as PI3K-AKT signaling pathway, Foxo signaling pathway, microRNAs, MAPK signaling pathway, HIF-1 signaling pathway, etc. The targets with the highest degree were identified through the PPI network, namely CASP3, CTNNB1, JUN, IL6, MAPK3, HIF1A, STAT3, AKT1, TP53, CCND1, VEGFA, and EGFR. The results of the in vitro experiments showed that curcumin treatment of NSCLC down-regulated the gene expressions of CCND1, CASP3, HIF1A, IL-6, MAPK3, STAT3, AKT1, and TP53. Our findings revealed that curcumin functions as a potential therapeutic candidate for NSCLC by suppressing multiple signaling pathways and interacting with multiple gene targets.
Sujet(s)
Carcinome pulmonaire non à petites cellules , Biologie informatique , Curcumine , Tumeurs du poumon , Simulation de docking moléculaire , Carcinome pulmonaire non à petites cellules/traitement médicamenteux , Carcinome pulmonaire non à petites cellules/génétique , Humains , Curcumine/pharmacologie , Curcumine/usage thérapeutique , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/génétique , Cartes d'interactions protéiques/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Transduction du signal/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Réaction de polymérisation en chaine en temps réelRÉSUMÉ
Emerging evidence demonstrates that curcumin has an inhibitory effect on non-small cell lung cancer (NSCLC), and its targets and mechanism of action need further exploration. The goal of this study was to explore the potential targets and mechanism of curcumin against NSCLC by network pharmacology, bioinformatics, and experimental validation, thereby providing more insight into combination treatment with curcumin for NSCLC in preclinical and clinical research. Curcumin targets against NSCLC were predicted based on HIT2.0, STD, CTD, and DisGeNET, and the core targets were analyzed via protein-protein interaction network construction (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and molecular docking. The gene expression levels of samples in A549 cells, NCI-H460, and curcumin treated groups were detected by real-time quantitative PCR. A total of 67 common targets between curcumin and NSCLC were collected by screening public databases. GO and KEGG analysis suggested that curcumin treatment of NSCLC mainly involves cancer-related pathways, such as PI3K-AKT signaling pathway, Foxo signaling pathway, microRNAs, MAPK signaling pathway, HIF-1 signaling pathway, etc. The targets with the highest degree were identified through the PPI network, namely CASP3, CTNNB1, JUN, IL6, MAPK3, HIF1A, STAT3, AKT1, TP53, CCND1, VEGFA, and EGFR. The results of the in vitro experiments showed that curcumin treatment of NSCLC down-regulated the gene expressions of CCND1, CASP3, HIF1A, IL-6, MAPK3, STAT3, AKT1, and TP53. Our findings revealed that curcumin functions as a potential therapeutic candidate for NSCLC by suppressing multiple signaling pathways and interacting with multiple gene targets.
RÉSUMÉ
BACKGROUND: Eleusine indica (L.) Gaertn. (goosegrass) is a major weed in global cropping systems. It has evolved resistance to glyphosate due to single Pro-106-Ser (P106S) or double Thr-102-Ile + Pro-106-Ser (TIPS) EPSPS target site mutations. Here, experiments were conducted to evaluate the single effect of soybean competition and its combined effect with a glyphosate field dose (1080 g ae ha-1 ) on the growth and fitness of plants carrying these glyphosate resistance endowing target site mutations. RESULTS: TIPS E. indica plants are highly glyphosate-resistant but the double mutation endows a substantial fitness cost. The TIPS fitness penalty increased under the effect of soybean competition resulting in a cost of 95%, 95% and 96% in terms of, respectively, vegetative growth, seed mass and seed number investment. Glyphosate treatment of these glyphosate-resistant TIPS plants showed an increase in growth relative to those without glyphosate. Conversely, for the P106S moderate glyphosate resistance mutation, glyphosate treatment alone reduced survival rate, vegetative growth, aboveground biomass (34%), seed mass (48%) and number (52%) of P106S plants relative to the glyphosate nontreated plants. However, under the combined effects of both soybean competition and the field-recommended glyphosate dose, vegetative growth, aboveground biomass, seed mass and number of P106S and TIPS plants were substantially limited (by ≤99%). CONCLUSION: The ecological environment imposed by intense competition from a soybean crop sets a significant constraint for the landscape-level increase of both the E. indica single and double glyphosate resistance mutations in the agroecosystem and highlights the key role of crop competition in limiting the population growth of weeds, whether they are herbicide-resistant or susceptible. © 2022 Society of Chemical Industry.
Sujet(s)
Eleusine , Fabaceae , Herbicides , 3-Phosphoshikimate 1-carboxyvinyltransferase/génétique , Eleusine/génétique , Glycine/analogues et dérivés , Résistance aux herbicides/génétique , Herbicides/pharmacologie , Mutation , Glycine max/génétique , GlyphosateRÉSUMÉ
PURPOSE: The present study aimed to investigate the inhibitory effect of fluorofenidone against transforming growth factor ß2-induced proliferation and epithelial-mesenchymal transition in human lens epithelial cell line FHL 124 and its potential mechanism. METHODS: We evaluated the effect of fluorofenidone on proliferation and epithelial-mesenchymal transition of human lens epithelial cell line FHL 124 in vitro. After treatment with 0, 0.1, 0.2, 0.4, 0.6, and 1.0 mg/mL fluorofenidone, cell proliferation was measured via MTT assay. Cell viability was evaluated by lactate dehydrogenase activity from damaged cells. FHL 124 cells were treated with different transforming growth factor ß2 concentrations (0-10 ng/mL) for 24 h and the expression of CTGF, α-SMA, COL-I, E-cadherin, and Fn were detected via quantitative polymerase chain reaction and Western blot analysis. After treatment with 0, 0.2, and 0.4 mg/ml fluorofenidone, the expressions of transforming growth factor ß2 and SMADs were detected with real-time polymerase chain reaction and Western blot analysis. Expressions of CTGF, α-SMA, COL-I, and Fn were analyzed by immunocytochemistry assay. RESULTS: The viability of FHL 124 cells was not inhibited when the fluorofenidone concentration was ≤0.4 mg/mL after the 24h treatment. Cytotoxicity was not detected via lactate dehydrogenase assay after the 24h and 36h treatment with 0.2 and 0.4 mg/mL fluorofenidone. Transforming growth factor ß2 increased mRNA and protein expression of CTGF, α-SMA, COL-I, and Fn. However, fluorofenidone significantly suppressed expression of SMADs, CTGF, α-SMA, COL-I, and Fn in the absence or presence of transforming growth factor ß2 stimulation. CONCLUSIONS: Fluorofenidone significantly inhibited expression of SMADs, CTGF, α-SMA, COL-I, and Fn in FHL 124 cells. Due to noncompliance in infants, fluorofenidone may become a novel therapeutic drug against posterior capsular opacification in infants.
Sujet(s)
Opacification de la capsule postérieure , Cristallin , Cellules épithéliales , Transition épithélio-mésenchymateuse , Humains , PyridonesRÉSUMÉ
The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30%), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed.
Sujet(s)
Acetyl-coA carboxylase/génétique , Résistance aux herbicides , Herbicides/pharmacologie , Lolium/effets des médicaments et des substances chimiques , Protéines végétales/génétique , Acetyl-coA carboxylase/métabolisme , Aptitude génétique , Cinétique , Lolium/enzymologie , Lolium/génétique , Lolium/croissance et développement , Mutation , Protéines végétales/métabolismeRÉSUMÉ
BACKGROUND: Glyphosate resistance in populations of the C(4) perennial Sorghum halepense (Johnsongrass) and C(3) annual Lolium rigidum (rigid ryegrass) has evolved and been documented in many cropping areas around the globe. In S. halepense and in the majority of reported cases in L. rigidum the glyphosate resistance trait has been associated with a mechanism that reduces glyphosate translocation within plants. Here, the significant decrease in the glyphosate resistance level when resistant plants of S. halepense and L. rigidum are grown at suboptimal cool temperature conditions is reported. RESULTS: Lowering temperature from 30 to 19 °C in S. halepense and from 19 to 8 °C in L. rigidum significantly reduced both plant survival and above-ground biomass produced by glyphosate-resistant plants. Thus, glyphosate resistance parameters significantly decreased when glyphosate-treated resistant plants of both species were grown under non-optimal temperature conditions. The results suggest that the resistance mechanism against glyphosate damage is less efficient at sub-optimal [corrected] growing temperatures. CONCLUSION: It is possible to increase the control of glyphosate-resistant S. halepense and L. rigidum populations by treatment with glyphosate during growing conditions at suboptimal low temperatures. Conversely, glyphosate failure will continue to occur on glyphosate-resistant populations treated during periods of higher temperatures
Sujet(s)
Glycine/analogues et dérivés , Résistance aux herbicides , Herbicides/pharmacologie , Lolium/effets des médicaments et des substances chimiques , Sorghum/effets des médicaments et des substances chimiques , Lutte contre les mauvaises herbes/méthodes , Glycine/pharmacologie , Lolium/croissance et développement , Sorghum/croissance et développement , Température , GlyphosateRÉSUMÉ
BACKGROUND: In a large cropping area of northern Argentina, Sorghum halepense (Johnsongrass) has evolved towards glyphosate resistance. This study aimed to determine the molecular and biochemical basis conferring glyphosate resistance in this species. Experiments were conducted to assess target EPSPS gene sequences and (14)C-glyphosate leaf absorption and translocation to meristematic tissues. RESULTS: Individuals of all resistant (R) accessions exhibited significantly less glyphosate translocation to root (11% versus 29%) and stem (9% versus 26%) meristems when compared with susceptible (S) plants. A notably higher proportion of the applied glyphosate remained in the treated leaves of R plants (63%) than in the treated leaves of S plants (27%). In addition, individuals of S. halepense accession R(2) consistently showed lower glyphosate absorption rates in both adaxial (10-20%) and abaxial (20-25%) leaf surfaces compared with S plants. No glyphosate resistance endowing mutations in the EPSPS gene at Pro-101-106 residues were found in any of the evaluated R accessions. CONCLUSION: The results of the present investigation indicate that reduced glyphosate translocation to meristems is the primary mechanism endowing glyphosate resistance in S. halepense from cropping fields in Argentina. To a lesser extent, reduced glyphosate leaf uptake has also been shown to be involved in glyphosate-resistant S. halepense.