Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 295
Filtrer
1.
Huan Jing Ke Xue ; 45(7): 3965-3972, 2024 Jul 08.
Article de Chinois | MEDLINE | ID: mdl-39022944

RÉSUMÉ

The aim of this study was to comprehensively understand the water environment quality status and its change trend in the Inner Mongolia section of the Yellow River Basin. To analyze the water quality in recent years,the water quality data in the Yellow River basin from 2003 to 2020 were firstly collected from five typical monitoring stations.Various data analysis methods, including principal component analysis, cluster analysis, and a long short-term memory model, were used along with an improved comprehensive water quality identification index to explore the spatiotemporal characteristics of water quality in the Yellow River Basin. The results showed that the overall water quality in the basin has improved and stabilized over time. In terms of temporal variation, there was a distinction between the wet season and dry season, with a better status observed during the wet season due to increased agricultural irrigation and higher water volume. Spatially, the five monitoring sections could be divided into three categories based on strong natural factors that maintained their temporal characteristics during the wet season; however, significant differences were observed during the dry season due to urban water usage patterns. Analysis using LSTM models revealed that ammonia nitrogen will continue to decline and have a decreasing impact on the comprehensive water quality. These findings provide valuable insights for the comprehensive management of water quality in Inner Mongolia's Yellow River Basin.

2.
Huan Jing Ke Xue ; 45(7): 3941-3952, 2024 Jul 08.
Article de Chinois | MEDLINE | ID: mdl-39022942

RÉSUMÉ

Dangerous biological agents (DBAs) refer to microorganisms, toxins, and other biological substances that have the potential to cause significant harm to humans, animals, plants, and the environment. They are the primary target of the prevention and response in China's Biosafety Law, and it is of great importance to clarify the characteristics of DBAs in the Beijing suburban rivers for the insurance of the water safety in Beijing. The typical Beijing suburban rivers (Mangniu River, Chaohe River, and Baihe River) were selected, and the occurrence and distribution of DBAs concerning the molecular biology composition as the nucleic acid (antibiotic resistance genes, ARGs), nucleic acid and proteins (viruses), and intact cellular structures (pathogens) were determined based on the metagenomics. The results showed that there was a high abundance of multidrug-resistant ARGs in the water and substrates of the urban river; on average, they made up 74.11% ±6.82% of the total, and the abundance of aminoglycoside and MLS (macrolide-lincosamide-streptomycin)-resistant ARGs was the highest, but the predominant subtypes of ARGs were of low risk and had limited transmission potential. The viruses in the tributary mainly belonged to the phages, most of which were Kyanoviridae and Peduoviridae, with averages of 16.98% ±8.44% and 16.19% ±10.79%, respectively. Eukaryotic viral populations consisted mainly of members from the Mimiviridae and Phycodnaviridae families, with averages of 10.37% ±12.68% and 8.34% ±6.97%, respectively, whereas there were few viruses related to human and animal diseases. The pathogenic bacteria mainly contained Neisseria meningitidis, Brucella suis, Salmonella enterica, and Burkholderia pseudomalle, with averages of 19.17% ±3.63%, 12.76% ±2.88%, 11.22% ±1.95%, and 8.26% ±1.84%, respectively. The composition and abundance of pathogenic bacteria varied significantly among different tributaries and locations, possibly owing to water quality, pollution sources, environmental factors, and human activities. These findings can provide data support for the water safety management and biological risk control of Beijing suburban rivers.


Sujet(s)
Rivières , Pékin , Surveillance de l'environnement , Microbiologie de l'eau , Virus/isolement et purification , Bactéries/classification , Bactéries/génétique , Bactéries/isolement et purification , Chine , Résistance microbienne aux médicaments/génétique , Métagénomique
3.
Micromachines (Basel) ; 15(6)2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38930729

RÉSUMÉ

A novel insulated gate bipolar transistor with Semi-Insulated POly Silicon (SIPOS) is presented in this paper and analyzed through TCAD simulation. In the off state, the SIPOS-IGBT can obtain a uniform electric field distribution, which enables a thinner drift region under the same breakdown voltage. In the on state, an electron accumulation layer is formed along the SIPOS, which can increase the injection level of the "PiN region" in the device, and the carrier concentration in the drift region is also increased due to the charge balance effect. Moreover, the SIPOS-IGBT can achieve a quick and thorough depletion in the drift region during the turn-off transient, which can greatly reduce the turn-off loss of the SIPOS-IGBT. These advantages improve the tradeoff between the conduction and switching losses. According to the simulation results, the SIPOS-IGBT obtained a 58% lower turn loss than that of a field-stop (FS) IGBT and 30% lower than an HK-IGBT with the same on-state voltage.

4.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38591083

RÉSUMÉ

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

5.
Infect Drug Resist ; 17: 1215-1228, 2024.
Article de Anglais | MEDLINE | ID: mdl-38562405

RÉSUMÉ

Objective: To examine the risk factors linked with occupational blood exposure (OBE) among nursing staff (NS), we pinpoint deficiencies in the compliance with policies of infection prevention and control, and assess the expenditures associated with infection prevention and control. Methods: Healthcare workers that completed an "Occupational Blood Exposure Report Form" were divided into NS (observation) group and non-NS (control) group. Univariate and multivariable analyses were conducted to compare both groups in various aspects. We also explored design patents intended to minimize occupational exposure. Results: The highest incidence of OBE was observed in the department of neurosurgery. Among NS, OBE incidence was found to be influenced by independent risk factors, such as gender, age, occupational title, work location, and incidence of sharps injuries. Protective factors against OBEs included the use of arterial blood gas needles and suture needles. Personal protective equipment (PPE) usage rates were low in both groups prior to OBEs (0.74% vs 0.00%, P > 0.05). Correct emergency management could be improved promptly by both groups following an OBE (P > 0.05). However, the observation group exhibited a higher proportion of blood expression after a sharps injury and a higher re-evaluation rate at 6 months post-exposure compared to the control group (P < 0.05). In 2018, the per capita costs of infection prevention and control for NS were the Chinese Yuan (RMB) 339.43 per individual. In response to these findings, two utility model patents have been authorized. Conclusion: The risk and protective factors related to the occurrence of OBEs were investigated in this study, suggesting that there is a need for improvement in the rate of PPE usage and the re-evaluation rate of OBEs among NS. Additionally, focused training on emergency blood expression and compliance with policies among non-NS personnel is deemed necessary.

6.
Adv Sci (Weinh) ; 11(14): e2308496, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38308190

RÉSUMÉ

During maternal-to-zygotic transition (MZT) in the embryo, mRNA undergoes complex post-transcriptional regulatory processes. However, it is unclear whether and how alternative splicing plays a functional role in MZT. By analyzing transcriptome changes in mouse and human early embryos, dynamic changes in alternative splicing during MZT are observed and a previously unnoticed process of zygotic splicing activation (ZSA) following embryonic transcriptional activation is described. As the underlying mechanism of RNA splicing, splicing factors undergo dramatic maternal-to-zygotic conversion. This conversion relies on the key maternal factors BTG4 and PABPN1L and is zygotic-transcription-dependent. CDK11-dependent phosphorylation of the key splicing factor, SF3B1, and its aggregation with SRSF2 in the subnuclear domains of 2-cell embryos are prerequisites for ZSA. Isoforms generated by erroneous splicing, such as full-length Dppa4, hinder normal embryonic development. Moreover, alternative splicing regulates the conversion of early embryonic blastomeres from totipotency to pluripotency, thereby affecting embryonic lineage differentiation. ZSA is an essential post-transcriptional process of MZT and has physiological significance in generating new life. In addition to transcriptional activation, appropriate expression of transcript isoforms is also necessary for preimplantation embryonic development.


Sujet(s)
Transcriptome , Zygote , Humains , Animaux , Souris , Transcriptome/génétique , Zygote/métabolisme , Développement embryonnaire/génétique , Épissage des ARN , Isoformes de protéines/génétique , Protéines de liaison au poly(A)/génétique , Protéines de liaison au poly(A)/métabolisme , Protéines nucléaires/génétique
7.
Adv Mater ; 36(16): e2311327, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38221508

RÉSUMÉ

Severe capacity decay under subzero temperatures remains a significant challenge for lithium-ion batteries (LIBs) due to the sluggish interfacial kinetics. Current efforts to mitigate this deteriorating interfacial behavior rely on high-solubility lithium salts (e.g., Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), Lithium bis(fluorosulfonyl)imide (LiFSI))-based electrolytes to construct anion participated solvation structures. However, such electrolytes bring issues of corrosion on the current collector and increased costs. Herein, the most commonly used Lithium hexafluorophosphate (LiPF6) instead, to establish a peculiar solvation structure with a high ratio of ion pairs and aggregates by introducing a deshielding NO3 - additive for low-temperature LIBs is utilized. The deshielding anion significantly reduces the energy barrier for interfacial behavior at low temperatures. Benefiting from this, the graphite (Gr) anode retains a high capacity of ≈72.3% at -20 °C, which is far superior to the 32.3% and 19.4% capacity retention of counterpart electrolytes. Moreover, the LiCoO2/Gr full cell exhibits a stable cycling performance of 100 cycles at -20 °C due to the inhibited lithium plating. This work heralds a new paradigm in LiPF6-based electrolyte design for LIBs operating at subzero temperatures.

8.
Protoplasma ; 261(3): 571-579, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38170395

RÉSUMÉ

Our experiments explored the effects of far-red (FR) light on cucumber (Cucumis sativus L. 'Zhongnong No. 26') seedling growth. Our results indicated that FR light significantly promoted the growth of cucumber seedlings. Specifically, it promoted the accumulation of shoot biomass and the elongation of internodes and leaves (except the first leaf at the bottom). Further analysis showed that FR light had no effect on the accumulation contents of abscisic acid (ABA) and auxin (IAA) in seedling leaves. Still, it significantly caused the increase of the gibberellin (GA3, GA4, and GA7) contents and the decrease of GA1 content, which suggested that the leaf expansion progress under FR light may be primarily related to GA. Therefore, the cucumber seedling leaf expansion response to GA was evaluated under different light sources. The exogenous spraying of different GA4/7 contents significantly promoted the leaf expansion of cucumber seedlings under white light, while the GA biosynthesis inhibitor paclobutrazol (PAC) significantly promoted the expression of GA hydrolytic genes (GA2ox2 and GA2ox4) and decreased the content of endogenous active GA, which inhibited the leaf expansion induced by FR light. As expected, the combination of exogenous GA4/7 and PAC restored the growth promotion effect of FR light on cucumber seedling leaves. It increased the contents of endogenous active GA (GA1, GA3, GA4, and GA7), and the expression trend in GA synthetic/hydrolytic-related genes was the opposite of that of PAC was applied alone. All of the above results indicated that FR light regulates leaf expansion progress in cucumber seedlings through GA.


Sujet(s)
Cucumis sativus , Gibbérellines , Gibbérellines/pharmacologie , Gibbérellines/métabolisme , Plant/métabolisme , Cucumis sativus/génétique , , Feuilles de plante/métabolisme
9.
EMBO Mol Med ; 16(2): 294-318, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38297099

RÉSUMÉ

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.


Sujet(s)
Alpha-ketoglutarate-dependent dioxygenase FTO , Kinase-2 cycline-dépendante , Diabète , Rétinopathie diabétique , Animaux , Souris , Alpha-ketoglutarate-dependent dioxygenase FTO/génétique , Alpha-ketoglutarate-dependent dioxygenase FTO/métabolisme , Kinase-2 cycline-dépendante/génétique , Kinase-2 cycline-dépendante/métabolisme , Cellules endothéliales/métabolisme , Rétine/métabolisme , ARN , Danio zébré/génétique
10.
Angew Chem Int Ed Engl ; 63(12): e202318369, 2024 Mar 18.
Article de Anglais | MEDLINE | ID: mdl-38179853

RÉSUMÉ

Thermal safety issues of batteries have hindered their large-scale applications. Nonflammable electrolytes improved safety but solvent evaporation above 100 °C limited thermal tolerance, lacking reliability. Herein, fire-tolerant metal-air batteries were realized by introducing solute-in-air electrolytes whose hygroscopic solutes could spontaneously reabsorb the evaporated water solvent. Using Zn/CaCl2 -in-air/carbon batteries as a proof-of-concept, they failed upon burning at 631.8 °C but self-recovered then by reabsorbing water from the air at room temperature. Different from conventional aqueous electrolytes whose irreversible thermal transformation is determined by the boiling points of solvents, solute-in-air electrolytes make this transformation determined by the much higher decomposition temperature of solutes. It was found that stronger intramolecular bonds instead of intermolecular (van der Waals) interactions were strongly correlated to ultra-high tolerance temperatures of our solute-in-air electrolytes, inspiring a concept of non-van der Waals electrolytes. Our study would improve the understanding of the thermal properties of electrolytes, guide the design of solute-in-air electrolytes, and enhance battery safety.

11.
Biomed Chromatogr ; 38(1): e5763, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37858975

RÉSUMÉ

Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.


Sujet(s)
Stéatose hépatique non alcoolique , Souris , Animaux , Stéatose hépatique non alcoolique/métabolisme , Méthionine/métabolisme , Méthionine/pharmacologie , Choline , Foie/métabolisme , Racéméthionine/métabolisme , Racéméthionine/pharmacologie , Régime alimentaire , Inflammation/métabolisme , Souris de lignée C57BL , Modèles animaux de maladie humaine
12.
Adv Mater ; 36(4): e2304900, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37549425

RÉSUMÉ

An initial Coulombic efficiency (ICE) higher than 90% is crucial for industrial lithium-ion batteries, but numerous electrode materials are not standards compliant. Lithium trapping, due to i) incomplete solid-state reaction of Li+ generation and ii) sluggish Li+ diffusion, undermines ICE in high-capacity electrodes (e.g., conversion-type electrodes). Current approaches mitigating lithium trapping emphasize ii) nanoscaling (<50 nm) to minimize Li+ diffusion distance, followed by severe solid electrolyte interphase formation and inferior volumetric energy density. Herein, this work accentuates i) instead, to demonstrate that the lithium trapping can be mitigated by boosting the solid-state reaction reactivity. As a proof-of-concept, ternary LiFeO2 anodes, whose discharged products contain highly reactive vacancy-rich Fe nanoparticles, can alleviate lithium trapping and enable a remarkable average ICE of ≈92.77%, much higher than binary Fe2 O3 anodes (≈75.19%). Synchrotron-based techniques and theoretical simulations reveal that the solid-state reconversion reaction for Li+ generation between Fe and Li2 O can be effectively promoted by the Fe-vacancy-rich local chemical environment. The superior ICE is further demonstrated by assembled pouch cells. This work proposes a novel paradigm of regulating intrinsic solid-state chemistry to ameliorate electrochemical performance and facilitate industrial applications of various advanced electrode materials.

13.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-1021359

RÉSUMÉ

BACKGROUND:Persistent hyperglycemia has been identified as promoting neurovascular dysfunction,leading to irreversible endothelial dysfunction,increased neuronal apoptosis,oxidative stress and inflammation.These changes in combination or alone lead to microvascular and macrovascular lesions as well as progressive neuropathy.Noncoding RNAs may provide a new strategy for understanding the etiology,pathogenesis and treatment of the disease. OBJECTIVE:To review the role and mechanism of noncoding RNAs in the occurrence and development of diabetic peripheral neuropathy by reviewing relevant literature at home and abroad,in order to provide new ideas and approaches for noncoding RNAs in the prevention,diagnosis and treatment of diabetes neuropathy. METHODS:CNKI and PubMed were retrieved for relevant literature published from database inception to 2022.The key words were"noncoding RNA;lncRNA;miRNA;diabetes peripheral neuropathy;expression profile"in Chinese and English,respectively.The retrieved documents were summarized and analyzed,and 61 articles were finally selected for further review. RESULTS AND CONCLUSION:(1)Noncoding RNA plays a key role in the pathophysiological process of diabetic peripheral neuropathy.Among the most widely studied regulatory noncoding RNA species,there are long noncoding RNAs,circular RNAs and microRNAs.(2)Through the regulation of noncoding RNAs,the activation or inhibition of related cell pathways,inflammatory genes and downstream-related cytokines will inhibit cell apoptosis,improve inflammation,and thus change the expression of target genes to participate in the process of diabetic neuralgia.(3)Although many microRNAs and long noncoding RNAs have been found to participate in diabetic peripheral neuropathy,the mechanisms of many noncoding RNAs are unclear,and the same noncoding RNAs may play different roles in different modes.Therefore,it is necessary to further study their action modes in disease etiology and pathology,thereby clarifying their role in the pathogenesis of diabetic peripheral neuropathy.However,the criteria for evaluating noncoding RNA activity have not yet been established,and further research is needed on which specific noncoding RNAs play a dominant regulatory role.(4)MicroRNAs,long noncoding RNAs and their target genes can regulate progressive neuropathy,which are expected to become new targets for the clinical prevention and treatment of diabetic peripheral neuropathy and new biomarkers for the development and prognosis of diabetic peripheral neuropathy.

14.
Article de Chinois | WPRIM (Pacifique Occidental) | ID: wpr-1003426

RÉSUMÉ

Diabetic ulcer (DU) wound is one of the chronic and serious complications of diabetes characterized by prolonged wound healing, and it is more common in foot and lower extremity ulcers. DU has brought great economic and psychological pressure to patients and seriously affected the quality of life of patients because of its great difficulty in treatment, long treatment process, and high morbidity and mortality. Therefore, how to help the rapid healing of DU wounds, reduce the disability rate and mortality rate, protect limb function, and improve the quality of life is an important topic and hot spot in the field of medical research. The pathogenesis of DU is complex, mainly including microcirculation disorder, peripheral neuropathy, inflammation and infection, and excessive apoptosis of cells, involving physiological processes such as wound inflammation, granulation tissue hyperplasia and re-epithelialization. A large number of previous studies have found that Chinese medicine can regulate phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), Wnt/β-catenin, nuclear factor-κB (NF-κB), Notch, nuclear factor E2-related factor 2 (Nrf2), transforming growth factor-β (TGF-β)/Smad, and other signaling pathways, regulate abnormal glucose metabolism, improve microcirculation, inhibit inflammation and oxidative stress, regulate cell proliferation and excessive apoptosis, and promote wound tissue growth to promote the rapid healing of DU wounds under the guidance of treatment based on traditional Chinese medicine (TCM) syndrome differentiation and internal and external treatment. Therefore, this paper reviewed Chinese medicinal monomers or Chinese medicinal compounds in recent years in regulating the above signaling pathways and the expression of key protein molecules and promoting the rapid healing of DU wounds, aiming to provide ideas and a theoretical basis for the in-depth study and clinical application of Chinese medicine in promoting the healing of DU wounds.

15.
J Multidiscip Healthc ; 16: 4091-4097, 2023.
Article de Anglais | MEDLINE | ID: mdl-38111827

RÉSUMÉ

Objective: The objective of this study is to examine the qualification rate of hand disinfection in the surgical department wards and analyze the influencing factors. Methods: A surprise assessment was carried out to evaluate the daily adherence to hand hygiene protocols in the surgical department wards. We aimed to investigate the factors that impact the qualification rate of hand disinfection. Results: In this study, the qualification rate of hand disinfection was determined to be 64.38%. Notably, this rate exhibited significant variations based on gender, age, surgical site, and department category. Specifically, the qualification rate of hand disinfection among female participants stood at 82.35%, surpassing the qualification rate observed among male counterparts of 52.83%. Furthermore, doctors in the age group of 41-50 years demonstrated the highest qualification rate, and the abdominal surgical site exhibited the most noteworthy qualification rate, reaching 79.49%. The outcomes of the multiple logistic regression analysis highlighted the significance of age and gender as influential factors impacting the qualification rate. Specifically, doctors aged 51 years or older exhibited the lowest hand hygiene compliance, whereas female doctors demonstrated a notably higher qualification rate compared to their male counterparts. Conclusion: The disheartening qualification rate of hand disinfection highlights a concerning lack of awareness regarding hand hygiene among surgeons in their professional duties. Consequently, targeted interventions are imperative, focusing on intensified training, educational initiatives, enhanced supervision, and internal performance evaluations for key groups. The findings not only serve as a valuable database but also offer a viable roadmap for similar hospitals to reinforce the management of nosocomial infections.

16.
Langmuir ; 39(46): 16606-16617, 2023 Nov 21.
Article de Anglais | MEDLINE | ID: mdl-37934508

RÉSUMÉ

Chemo-mechanical grinding (CMG) is a valid processing method to achieve a low-damage surface of silicon. However, the atomic interfacial mechanism during the CMG is still unclear. Herein, the CMG process of silicon was investigated using first principles and frictional wear tests in which the effects of pressure and speed on the interfacial reaction were comprehensively analyzed. Simulations showed that the formation and breakage of chemical bonds occurred at the CeO2/silicon interface during CMG, and the newly formed chemical bonds were stronger than those on the silicon surface. Also, it was found that the pressure and speed improved the materials removal rate by means of accelerating the interfacial chemical reactions, which is also verified by frictional wear tests. This study provides new insights into the atomic interfacial mechanism during silicon CMG.

17.
Violence Vict ; 38(5): 754-784, 2023 10 01.
Article de Anglais | MEDLINE | ID: mdl-37827579

RÉSUMÉ

There has been limited study of the link between victimization and the criminal offense in the correctional context, despite the extensive literature supporting the overlap of victims and offenders in the general population. In this study, 2,880 inmates in 12 institutional correction facilities in Taiwan were examined to explore the common factors of the victim-offender overlap, guided by the importation, deprivation, and low self-control theories. The results of bivariate probit regression analysis revealed the presence of the victim-offender phenomenon in Taiwanese inmates. Specifically, the inmates who had experienced violent victimization in childhood and those who held negative perceptions of corrections staff and management tended to be both victims and offenders as measured by various types of prison misconduct and victimization. The results also showed that importation and deprivation factors have similar explanatory power for both misconduct and victimization, and low self-control has greater explanatory power for misconduct than for victimization.


Sujet(s)
Victimes de crimes , Criminels , Prisonniers , Sang-froid , Humains , Prisons
18.
Huan Jing Ke Xue ; 44(9): 4985-4995, 2023 Sep 08.
Article de Chinois | MEDLINE | ID: mdl-37699816

RÉSUMÉ

The Miyun Reservoir is the major source of surface drinking water in Beijing. However, the total nitrogen (TN) concentrations in the Miyun Reservoir and inflowing rivers have recently been increasing. In this study, the Mangniu River, a typical inflow river in the upper reaches of the Miyun Reservoir, was selected as the study area to investigate the spatial distribution and transformation of various nitrogen forms from the perspective of microbial community composition and predicting function, aimimg at providing a scientific reference for nitrogen pollution control of the Miyun Reservoir. The results indicated that except for TN, all the other physical and chemical water quality indicators in the upper reaches of the Miyun Reservoir met the Class II criteria of the environmental quality standards for surface water in China (GB 3838-2002). Additionally, NO3--N was the primary constituent of TN, ranging from 77.7% to 92.9%. Banchengzi Reservoir has a certain self-purification ability because its high C/N ratio promotes denitrification. Significant differences in microbial community structure were observed between the water and sediments of Mangniu River along with spatial distribution. High NO3--N concentration was the major environmental factor affecting the succession of microbial community structure. Many nitrification and denitrification microorganisms existed in Mengniu River, and the relative abundance of denitrification bacteria (DNB) was higher than that of nitrification bacteria, and that in the sediments was slightly higher than that in the water. Nitrosopumilus and Pseudomonas were the dominant nitrification and denitrification bacteria in Mengniuhe River, respectively. The results of phylogenetic investigation of communities by the reconstruction of unobserved states (PICRUSt2) showed that NO3--N reduction module was the major nitrogen metabolism module, which primarily occurred in water. The abundance of the functional genes for nitrification (i.e., narGH) was the highest in water, and the major functional gene involved in NO3--N reduction was nirBD of DNRA, which was primarily present in the sediments; however, the main functional gene involved in denitrification was nirK.


Sujet(s)
Microbiote , Rivières , Phylogenèse , Azote , Qualité de l'eau
19.
Ultrasonics ; 135: 107131, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37556915

RÉSUMÉ

Compared with conventional drilling (CD), ultrasonic vibration-assisted drilling(UVAD) is experimentally proven a promising method to reduce the cutting temperature. But sometimes cutting temperature also becomes higher in UVAD than in CD. To further make clear the cutting temperature mechanisms in UVAD, this study aims to study the effect of tool's ultrasonic vibration on the cutting heat generation and heat dissipation at a relatively micro level. Firstly, drilling experiments are designed to explore the variations of cutting heat under different ultrasonic vibrations. Then, to analyze the influence of ultrasonic vibration on the cutting heat theoretically, a kinematic model is developed to describe the dynamic contact between the cutting edge and workpiece in UVAD. Besides, a cutting heat analysis model based on the contact characteristics in UVAD is proposed to study and compare the variations of cutting heat generation. The effect of ultrasonic vibration on the cutting heat generation, heat dispassion, and the resultant cutting temperature under different machining in UVAD conditions are discussed. It is indicated from the theoretical analysis that more cutting heat tends to be produced due to the significantly increased sliding velocity on the cutting edge-workpiece interface when the ultrasonic vibration is applied. The analysis agrees with the experimental results that the cutting temperature in dry UVAD is higher than in dry CD. But on the other hand, ultrasonic vibration can also improve the lubrication and cooling effect under appropriate machining conditions, which is beneficial to the reduction in cutting temperature. The investigation shows the multifaceted influences of ultrasonic vibration on the cutting temperature in the drilling process in detail, which provides a reference for UVAD parameter optimization.

20.
Cell Rep ; 42(7): 112779, 2023 07 25.
Article de Anglais | MEDLINE | ID: mdl-37436898

RÉSUMÉ

Retinal pigment epithelium (RPE) dysfunction and choroidal neovascularization (CNV) are predominant features of age-related macular degeneration (AMD), with an unclear mechanism. Herein, we show that RNA demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) is up-regulated in AMD. In RPE cells, ALKBH5 overexpression associates with depolarization, oxidative stress, disturbed autophagy, irregular lipid homeostasis, and elevated VEGF-A secretion, which subsequently promotes proliferation, migration, and tube formation of vascular endothelial cells. Consistently, ALKBH5 overexpression in mice RPE correlates with various pathological phenotypes, including visual impairments, RPE anomalies, choroidal neovascularization (CNV), and interrupted retinal homeostasis. Mechanistically, ALKBH5 regulates retinal features through its demethylation activity. It targets PIK3C2B and regulates the AKT/mTOR signaling pathway with YTHDF2 as the N6-methyladenosine reader. IOX1, an ALKBH5 inhibitor, suppresses hypoxia-induced RPE dysfunction and CNV progression. Collectively, we demonstrate that ALKBH5 induces RPE dysfunction and CNV progression in AMD via PIK3C2B-mediated activation of the AKT/mTOR pathway. Pharmacological inhibitors of ALKBH5, like IOX1, are promising therapeutic options for AMD.


Sujet(s)
AlkB Homolog 5, RNA demethylase , Néovascularisation choroïdienne , Dégénérescence maculaire , Animaux , Souris , Néovascularisation choroïdienne/métabolisme , Cellules endothéliales/métabolisme , Dégénérescence maculaire/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Épithélium pigmentaire de la rétine/métabolisme , Sérine-thréonine kinases TOR/métabolisme , AlkB Homolog 5, RNA demethylase/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE