Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Immunology ; 162(1): 44-57, 2021 01.
Article de Anglais | MEDLINE | ID: mdl-32852789

RÉSUMÉ

Toll-like receptor (TLR) 4 signalling is critical for innate immunoinflammatory response and widely triggers the development of various types of clinical diseases. MicroRNA-7 (miR-7) is well documented to play an important regulatory role in various biological events. However, the exact role of miR-7 in TLR4 signalling pathway remains to be fully elucidated. In the present study, we found that miR-7 expression in TLR4 signalling-activated bone marrow-derived macrophages (BMDMs) stimulated by LPS was dramatically increased. Importantly, miR-7 deficiency significantly enhanced the production of related inflammatory cytokines including IL-1ß, IL-6 and IL-12, as well as TNF-α, on LPS-activated BMDMs, accompanied by elevated transduction of TLR4 signalling including Myd88-dependent and Myd88-independent pathways, whereas miR-7 overexpression significantly decreased the transduction of TLR4 signalling and the production of related inflammatory cytokines. Mechanistically, we identified family with sequence similarity 177, member A (FAM177A) as a novel target molecule of miR-7. Furthermore, down-regulation of FAM177A using RNAi could impair the transduction of TLR4 signalling. Finally, down-regulation of FAM177A also reversed the effect of miR-7 deficiency on TLR4 signalling transduction and production of related inflammatory cytokines on BMDMs. Therefore, we provide the new evidence that miR-7 acts as a novel negative fine-tuner in regulating TLR4 signalling pathways by targeting FAM177A, which might throw light on the basal understanding on the regulatory mechanism of TLR4 signalling and benefit the development of therapeutic strategies against related clinical diseases.


Sujet(s)
microARN/génétique , Transduction du signal/génétique , Récepteur de type Toll-4/génétique , Animaux , Lignée cellulaire , Cytokines/génétique , Régulation négative/génétique , Cellules HEK293 , Humains , Inflammation/génétique , Macrophages/physiologie , Souris , Souris de lignée C57BL , Facteur de différenciation myéloïde-88/génétique , Cellules RAW 264.7
2.
Cell Biosci ; 10: 77, 2020.
Article de Anglais | MEDLINE | ID: mdl-32537124

RÉSUMÉ

MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level and play critical roles in regulating physiological function, and are becoming worldwide research hot spot in brain development and diseases. However, the exact value of miRNAs in brain physiological and pathological processes remain to be fully elucidated, which is vital for the application of miRNAs as diagnostic, prognostic, and therapeutic biomarkers for brain diseases. MicroRNA-7 (miR-7), as a highly expressed miRNA molecule in the mammalian brain, is well documented to play a critical role in development of various diseases. Importantly, accumulating evidence has shown that miR-7 is involved in a range of developmental and pathological processes of brain. Expressively, miR-7, encoded by three genes located different chromosomes, is dominantly expressed in neurons with sensory or neurosecretory. Moreover, the expression of miR-7 is regulated at three levels including gene transcription, process of primary and precursor sequence and formation of mature sequence. Physiologically, miR-7 principally governs the physiological development of Pituitary gland, Optic nervous system and Cerebral cortex. Pathologically, miR-7 can regulate multiple genes thereby manipulating the process of various brain diseases including neurodegenerative diseases, neuroinflammation, and mental disorders and so on. These emerging studies have shown that miR-7, a representative member of miRNA family, might be a novel intrinsic regulatory molecule involved in the physiological and pathological process of brain. Therefore, in-depth studies on the role of miR-7 in brain physiology and pathology undoubtedly not only provide a light on the roles of miRNAs in brain development and diseases, but also are much helpful for ultimate development of therapeutic strategies against brain diseases. In this review, we provide an overview of current scientific knowledge regarding the expression and function of miR-7 in development and disease of brain and raise many issues involved in the relationship between miR-7 and brain physiological and pathological processes.

3.
J Neuroinflammation ; 17(1): 28, 2020 Jan 20.
Article de Anglais | MEDLINE | ID: mdl-31959187

RÉSUMÉ

BACKGROUND: Accumulating evidence has documented that microRNA-7 (miR-7) plays an important role in the pathology of various diseases. However, the potential role of miR-7 in brain tissue inflammation (BTI) remains unclear. METHODS: We detected the expression of miR-7 in LPS-induced murine BTI model and observed the possible effects of miR-7 deficiency on the pathology of BTI. To elucidate the mechanism, the target gene of miR-7 was screened out by Gene chip assay and its potential roles in BTI were evaluated by Western blot, immunofluorescence, and RNAi assay, respectively. RESULTS: MiR-7 was upregulated in brain tissue in BTI mice and its deficiency could significantly aggravate the pathology of brain tissue. Moreover, RORα, a new target molecule of miR-7, was upregulated in brain tissue from miR-7 deficiency BTI mice. Of note, downregulation of RORα could remarkably exacerbate the pathology of brain tissue and elevate the transduction of NF-κB and ERK1/2 signaling pathways in brain tissue from miR-7 deficiency BTI mice. Furthermore, RORα and miR-7 were dominantly co-expressed in neurons of BTI mice. Finally, RORα synergized with miR-7 to control the inflammatory reaction of neuronal cells in response to LPS stimulation. CONCLUSIONS: MiR-7 expression is upregulated in BTI model. Moreover, miR-7 synergizes with its target gene RORα to control the inflammation reaction of neurons, thereby orchestrating the pathology of BTI.


Sujet(s)
Encéphalite/métabolisme , Encéphalite/anatomopathologie , microARN/métabolisme , Membre-1 du groupe F de la sous-famille-1 de récepteurs nucléaires/métabolisme , Animaux , Encéphalite/immunologie , Régulation de l'expression des gènes/physiologie , Cellules HEK293 , Humains , Souris , Souris de lignée C57BL , Cellules PC12 , Rats
4.
Mol Ther Nucleic Acids ; 11: 508-514, 2018 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-29858085

RÉSUMÉ

The technique of targeted expression of interesting genes, including distinct delivery systems and specific gene promoter-operating expression, is an important strategy for gene therapy against cancers. Up to now, extensive literature documented the efficacy of distinct delivery systems, such as the liposome system, nano-particle system, polyetherimide (PEI) system, and so on, in cancer gene therapy. However, a related document on the potential value of using a specific gene promoter, such as a tumor suppressor, in cancer gene therapy was still scary. The main obstacle might be that the selection of an ideal gene promoter to operate interesting gene expression in cancer gene therapy is still not fully understood. Therefore, many efforts need to be done in order to make it a real power tool for the human clinical treatment of cancer patients. The purpose of this review is to clarify the current state and some problematics in development of promoter-operating targeted expression of interesting genes and highlight its potential in cancer gene therapy.

5.
Front Neurol ; 8: 342, 2017.
Article de Anglais | MEDLINE | ID: mdl-28769871

RÉSUMÉ

Alzheimer's disease (AD), with main clinical features of progressive impairment in cognitive and behavioral functions, is the most common degenerative disease of the central nervous system. Recent evidence showed that microRNAs (miRNAs) played important roles in the pathological progression of AD. In this article, we reviewed the promising role of miRNAs in both Aß deposition and Tau phosphorylation, two key pathological characters in the pathological progression of AD, which might be helpful for the understanding of pathogenesis and the development of new strategies of clinical diagnosis and treatment of AD.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE