Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 112
Filtrer
1.
Free Radic Biol Med ; 178: 369-379, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34906725

RÉSUMÉ

Mitochondria participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular Ca2+ handling, apoptosis, and cell fate determination. Disruption of mitochondrial homeostasis under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and energy insufficiency, which further disturb mitochondrial and cellular homeostasis in a deleterious loop. Mitochondrial redox status has therefore become a potential target for therapy against cardiovascular diseases. In this review, we highlight recent progress in determining the roles of mitochondrial processes in regulating mitochondrial redox status, including mitochondrial dynamics (fusion-fission pathways), mitochondrial cristae remodeling, mitophagy, biogenesis, and mitochondrion-organelle interactions (endoplasmic reticulum-mitochondrion interactions, nucleus-mitochondrion communication, and lipid droplet-mitochondrion interactions). The strategies that activate vagal system include direct vagal activation (electrical vagal stimulation and administration of vagal neurotransmitter acetylcholine) and pharmacological modulation (choline and cholinesterase inhibitors). The vagal system plays an important role in maintaining mitochondrial homeostasis and suppressing mitochondrial oxidative stress by promoting mitochondrial biogenesis and mitophagy, moderating mitochondrial fusion and fission, strengthening mitochondrial cristae stabilization, regulating mitochondrion-organelle interactions, and inhibiting mitochondrial Ca2+ overload. Therefore, enhancement of vagal activity can maintain mitochondrial homeostasis and represents a promising therapeutic strategy for cardiovascular diseases.


Sujet(s)
Maladies cardiovasculaires , Maladies cardiovasculaires/traitement médicamenteux , Maladies cardiovasculaires/métabolisme , Homéostasie , Humains , Mitochondries/métabolisme , Dynamique mitochondriale , Oxydoréduction
2.
Front Pharmacol ; 12: 647481, 2021.
Article de Anglais | MEDLINE | ID: mdl-34084135

RÉSUMÉ

The disruption of gut microbes is associated with diabetic cardiomyopathy, but the mechanism by which gut microbes affect cardiac damage remains unclear. We explored gut microbes and branched-chain amino acid (BCAA) metabolite catabolism in diabetic cardiomyopathy mice and investigated the cardioprotective effect of pyridostigmine. The experiments were conducted using a model of diabetic cardiomyopathy induced by a high-fat diet + streptozotocin in C57BL/6 mice. The results of high-throughput sequencing showed that diabetic cardiomyopathy mice exhibited decreased gut microbial diversity, altered abundance of the diabetes-related microbes, and increased abundance of the BCAA-producing microbes Clostridiales and Lachnospiraceae. In addition, diabetes downregulated tight junction proteins (ZO-1, occludin, and claudin-1) and increased intestinal permeability to impair the intestinal barrier. These impairments were accompanied by reduction in vagal activity that manifested as increased acetylcholinesterase levels, decreased acetylcholine levels, and heart rate variability, which eventually led to cardiac damage. Pyridostigmine enhanced vagal activity, restored gut microbiota homeostasis, decreased BCAA-producing microbe abundance, and improved the intestinal barrier to reduce circulating BCAA levels. Pyridostigmine also upregulated BCAT2 and PP2Cm and downregulated p-BCKDHA/BCKDHA and BCKDK to improve cardiac BCAA catabolism. Moreover, pyridostigmine alleviated abnormal mitochondrial structure; increased ATP production; decreased reactive oxygen species and mitochondria-related apoptosis; and attenuated cardiac dysfunction, hypertrophy, and fibrosis in diabetic cardiomyopathy mice. In conclusion, the gut microbiota, BCAA catabolism, and vagal activity were impaired in diabetic cardiomyopathy mice but were improved by pyridostigmine. These results provide novel insights for the development of a therapeutic strategy for diabetes-induced cardiac damage that targets gut microbes and BCAA catabolism.

3.
Lab Invest ; 101(7): 878-896, 2021 07.
Article de Anglais | MEDLINE | ID: mdl-33649466

RÉSUMÉ

The key pathophysiological process leading to heart failure is cardiac remodeling, a term referring to cardiac hypertrophy, fibrosis, and apoptosis. We explored circadian rhythm disruption and calcium dyshomeostasis in cardiac remodeling and investigated the cardioprotective effect of choline. The experiments were conducted using a model of cardiac remodeling by abdominal aorta coarctation (AAC) in Sprague-Dawley rats. In vitro cardiomyocyte remodeling was induced by exposing neonatal rat cardiomyocytes to angiotensin II. The circadian rhythms of the transcript levels of the seven major components of the mammalian clock (Bmal1, Clock, Rev-erbα, Per1/2, and Cry1/2) were altered in AAC rat hearts during a normal 24 h light/dark cycle. AAC also upregulated the levels of proteins that mediate store-operated Ca2+ entry/receptor-operated Ca2+ entry (stromal interaction molecule 1 [STIM1], Orai1, and transient receptor potential canonical 6 [TRPC6]) in rat hearts. Moreover, choline ameliorated circadian rhythm disruption, reduced the upregulated protein levels of STIM1, Orai1, and TRPC6, and alleviated cardiac dysfunction and remodeling (evidenced by attenuated cardiac hypertrophy, fibrosis, and apoptosis) in AAC rats. In vitro analyses showed that choline ameliorated calcium overload, downregulated STIM1, Orai1, and TRPC6, and inhibited thapsigargin-induced store-operated Ca2+ entry and 1-oleoyl-2-acetyl-sn-glycerol-induced receptor-operated Ca2+ entry in angiotensin II-treated cardiomyocytes. In conclusion, choline attenuated AAC-induced cardiac remodeling and cardiac dysfunction, which was related to amelioration of circadian rhythm disruption and attenuation of calcium-handling protein defects. Modulation of vagal activity by choline targeting the circadian rhythm and calcium homeostasis may have therapeutic potential for cardiac remodeling and heart failure.


Sujet(s)
Calcium/métabolisme , Choline/pharmacologie , Rythme circadien/effets des médicaments et des substances chimiques , Défaillance cardiaque , Remodelage ventriculaire/effets des médicaments et des substances chimiques , Animaux , Aorte abdominale/physiopathologie , Signalisation calcique/effets des médicaments et des substances chimiques , Cellules cultivées , Modèles animaux de maladie humaine , Coeur/effets des médicaments et des substances chimiques , Coeur/physiopathologie , Défaillance cardiaque/métabolisme , Défaillance cardiaque/physiopathologie , Mâle , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Rats , Rat Sprague-Dawley
4.
Arterioscler Thromb Vasc Biol ; 40(11): 2649-2664, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-32938216

RÉSUMÉ

OBJECTIVE: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a critical role in atherosclerosis, vascular restenosis, and hypertension. Choline exerts cardioprotective effects; however, little is known about its effects on VSMC phenotypic switching and vascular remodeling. Here, we investigated whether choline modulates VSMC phenotypic changes and explored the underlying mechanisms. Approach and Results: In cultured VSMCs, choline promoted Nrf2 (nuclear factor erythroid 2-related factor 2) nuclear translocation, inducing the expression of HO-1 (heme oxygenase-1) and NQO-1 (NAD[P]H quinone oxidoreductase-1). Consequently, choline ameliorated Ang II (angiotensin II)-induced increases in NOX (NAD[P]H oxidase) expression and the mitochondrial reactive oxygen species level, thereby attenuating Ang II-induced VSMC phenotypic switching, proliferation, and migration, presumably via M3AChRs (type 3 muscarinic acetylcholine receptors). Downregulation of M3AChR or Nrf2 diminished choline-mediated upregulation of Nrf2, HO-1, and NQO-1 expression, as well as inhibition of VSMC phenotypic transformation, suggesting that M3AChR and Nrf2 activation are responsible for the protective effects of choline. Moreover, activation of the Nrf2 pathway by sulforaphane suppressed Ang II-induced VSMC phenotypic switching and proliferation, indicating that Nrf2 is a key regulator of VSMC phenotypic switching and vascular homeostasis. In a rat model of abdominal aortic constriction in vivo, choline attenuated VSMC phenotypic transformation and vascular remodeling in a manner related to activation of the Nrf2 pathway. CONCLUSIONS: These results reveal that choline impedes VSMC phenotypic switching, proliferation, migration, and vascular remodeling by activating M3AChR and Nrf2-antioxidant signaling and suggest a novel role for Nrf2 in VSMC phenotypic modulation.


Sujet(s)
Plasticité cellulaire/effets des médicaments et des substances chimiques , Choline/pharmacologie , Agonistes muscariniques/pharmacologie , Muscles lisses vasculaires/effets des médicaments et des substances chimiques , Myocytes du muscle lisse/effets des médicaments et des substances chimiques , Facteur-2 apparenté à NF-E2/métabolisme , Récepteur muscarinique de type M3/agonistes , Remodelage vasculaire/effets des médicaments et des substances chimiques , Animaux , Mouvement cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Mâle , Muscles lisses vasculaires/métabolisme , Muscles lisses vasculaires/anatomopathologie , Myocytes du muscle lisse/métabolisme , Myocytes du muscle lisse/anatomopathologie , Facteur-2 apparenté à NF-E2/génétique , Phénotype , Rat Sprague-Dawley , Récepteur muscarinique de type M3/génétique , Récepteur muscarinique de type M3/métabolisme , Transduction du signal
5.
J Hypertens ; 38(9): 1745-1754, 2020 09.
Article de Anglais | MEDLINE | ID: mdl-32516287

RÉSUMÉ

OBJECTIVE: Cyclooxygenase (COX)-2, an inducible isoform of the major rate-limiting enzymes that regulate the production of prostaglandins is associated with injury, inflammation and proliferation. We sought to examine whether plasma COX-2 levels and its genetic variants is associated with salt sensitivity, BP changes and/or hypertension in humans. METHODS: Eighty participants (aged 18-65 years) were maintained sequentially either on a usual diet for 3 days, a low-salt diet (3.0 g) for 7 days, and a high-salt diet (18.0 g) for an additional 7 days. In addition, we studied participants of the original Baoji Salt-Sensitive Study, recruited from 124 families from seven Chinese villages in 2004 who received the same salt intake intervention, and evaluated them for the development of hypertension. RESULTS: Plasma COX-2 levels were significantly decreased with reduction of salt intake from the usual to a low-salt diet and decreased further when converting from the low-salt to the high-salt diet. SNPs rs12042763 in the COX-2 gene was significantly associated with SBP responses to both low-salt and high-salt diet. SNPs rs689466 and rs12042763 were significantly associated with longitudinal changes in BPs. In addition, several COX-2 SNPs were significantly associated with incident hypertension over an 8-year follow-up. Gene-based analyses also supported the overall association of COX-2 with longitudinal changes in SBP and hypertension incidence. CONCLUSION: This study shows that dietary salt intake affects plasma COX-2 levels and that COX-2 may play a role in salt sensitivity, BP progression and development of hypertension in the Chinese populations studied.


Sujet(s)
Pression sanguine , Cyclooxygenase 2 , Hypertension artérielle/épidémiologie , Chlorure de sodium alimentaire/analyse , Adolescent , Adulte , Sujet âgé , Asiatiques , Pression sanguine/effets des médicaments et des substances chimiques , Pression sanguine/génétique , Cyclooxygenase 2/sang , Cyclooxygenase 2/génétique , Humains , Incidence , Adulte d'âge moyen , Polymorphisme de nucléotide simple/génétique , Jeune adulte
6.
Free Radic Biol Med ; 145: 103-117, 2019 12.
Article de Anglais | MEDLINE | ID: mdl-31553938

RÉSUMÉ

Mitochondrial dysfunction is associated with obesity-induced cardiac remodelling. Recent research suggests that the cristae are the true bioenergetic components of cells. Acetylcholine (ACh), the major neurotransmitter of the vagus nerve, exerts cardio-protective effects against ischaemia. This study investigated the role of cristae remodelling in palmitate (PA)-induced neonatal rat cardiomyocyte hypertrophy and explored the beneficial effects of ACh. We found loose, fragmented and even lysed cristae in PA-treated neonatal cardiomyocytes along with declines in mitochondrial network and complex expression and overproduction of mitochondrial reactive oxygen species (ROS); these changes ultimately resulted in increased myocardial size. Overexpression of mitofilin by adenoviral infection partly improved cristae shape, mitochondrial network, and ATP content and attenuated cell hypertrophy. Interestingly, siRNA-mediated AMP-activated protein kinase (AMPK) silencing increased the number of cristae with a balloon-like morphology without disturbing mitofilin expression. Furthermore, AMPK knockdown abolished the effects of mitofilin overexpression on cristae remodelling and inhibited the interaction of mitofilin with sorting and assembly machinery 50 (Sam50) and coiled-coil helix coiled-coil helix domain-containing protein 3 (CHCHD3), two core components of the mitochondrial contact site and cristae organizing system (MICOS) complex. Intriguingly, ACh upregulated mitofilin expression and AMPK phosphorylation via the muscarinic ACh receptor (MAChR). Moreover, ACh enhanced protein-protein interactions between mitofilin and other components of the MICOS complex, thereby preventing PA-induced mitochondrial dysfunction and cardiomyocyte hypertrophy; however, these effects were abolished by AMPK silencing. Taken together, our data suggest that ACh improves cristae remodelling to defend against PA-induced myocardial hypertrophy, presumably by increasing mitofilin expression and activating AMPK to form the MICOS complex through MAChR. These results suggest new and promising therapeutic approaches targeting mitochondria to prevent lipotoxic cardiomyopathy.


Sujet(s)
Kinase-2 associée au récepteur couplé à une protéine G/génétique , Hypertrophie/traitement médicamenteux , Mitochondries/génétique , Protéines mitochondriales/génétique , Protéines du muscle/génétique , Protein kinases/génétique , AMP-activated protein kinase kinases , Acétylcholine/métabolisme , Animaux , Animaux nouveau-nés/génétique , Remodelage auriculaire/effets des médicaments et des substances chimiques , Remodelage auriculaire/génétique , Modèles animaux de maladie humaine , Kinase-2 associée au récepteur couplé à une protéine G/métabolisme , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Humains , Hypertrophie/induit chimiquement , Hypertrophie/métabolisme , Hypertrophie/anatomopathologie , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/anatomopathologie , Protéines mitochondriales/métabolisme , Protéines du muscle/métabolisme , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/anatomopathologie , Obésité/traitement médicamenteux , Obésité/génétique , Obésité/métabolisme , Obésité/anatomopathologie , Palmitates/toxicité , Phosphorylation , Cartes d'interactions protéiques/effets des médicaments et des substances chimiques , Transport des protéines , Petit ARN interférent/pharmacologie , Rats , Nerf vague/effets des médicaments et des substances chimiques , Nerf vague/anatomopathologie
7.
Am J Physiol Endocrinol Metab ; 317(2): E312-E326, 2019 08 01.
Article de Anglais | MEDLINE | ID: mdl-31211620

RÉSUMÉ

Diabetic patients are more susceptible to myocardial ischemia damage than nondiabetic patients, with worse clinical outcomes and greater mortality. The mechanism may be related to glucose metabolism, mitochondrial homeostasis, and oxidative stress. Pyridostigmine may improve vagal activity to protect cardiac function in cardiovascular diseases. Researchers have not determined whether pyridostigmine regulates glucose metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in diabetic mice. In the present study, autonomic imbalance, myocardial damage, mitochondrial dysfunction, and oxidative stress were exacerbated in isoproterenol-stimulated diabetic mice, revealing the myocardial vulnerability of diabetic mice to injury compared with mice with diabetes or exposed to isoproterenol alone. Compared with normal mice, the expression of glucose transporters (GLUT)1/4 phosphofructokinase (PFK) FB3, and pyruvate kinase isoform (PKM) was decreased in diabetic mice, but increased in isoproterenol-stimulated normal mice. Following exposure to isoproterenol, the expression of (GLUT)1/4 phosphofructokinase (PFK) FB3, and PKM decreased in diabetic mice compared with normal mice. The downregulation of SIRT3/AMPK and IRS-1/Akt in isoproterenol-stimulated diabetic mice was exacerbated compared with that in diabetic mice or isoproterenol-stimulated normal mice. Pyridostigmine improved vagus activity, increased GLUT1/4, PFKFB3, and PKM expression, and ameliorated mitochondrial dysfunction and oxidative stress to reduce myocardial damage in isoproterenol-stimulated diabetic mice. Based on these results, it was found that pyridostigmine may reduce myocardial vulnerability to injury via the SIRT3/AMPK and IRS-1/Akt pathways in diabetic mice with isoproterenol-induced myocardial damage. This study may provide a potential therapeutic target for myocardial damage in diabetic patients.


Sujet(s)
Diabète expérimental , Cardiomyopathies diabétiques/prévention et contrôle , Glucose/métabolisme , Mitochondries du myocarde/effets des médicaments et des substances chimiques , Ischémie myocardique/prévention et contrôle , Bromure de pyridostigmine/pharmacologie , Animaux , Métabolisme glucidique/effets des médicaments et des substances chimiques , Diabète expérimental/complications , Diabète expérimental/traitement médicamenteux , Diabète expérimental/métabolisme , Diabète expérimental/anatomopathologie , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/anatomopathologie , Isoprénaline/pharmacologie , Mâle , Souris , Souris de lignée C57BL , Mitochondries du myocarde/physiologie , Ischémie myocardique/métabolisme , Ischémie myocardique/anatomopathologie , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Bromure de pyridostigmine/usage thérapeutique
8.
Sheng Li Xue Bao ; 71(2): 216-224, 2019 Apr 25.
Article de Chinois | MEDLINE | ID: mdl-31008481

RÉSUMÉ

Obesity is an important risk factor for cardiovascular diseases, which can lead to a variety of cardiovascular diseases including myocardial remodeling. Obesity may induce myocardial dysfunction by affecting hemodynamics, inducing autonomic imbalance, adipose tissue dysfunction, and mitochondrial dyshomeostasis. The key necessary biochemical functions for metabolic homeostasis are performed in mitochondria, and mitochondrial homeostasis is considered as one of the key determinants for cell viability. Mitochondrial homeostasis is regulated by dynamic regulation of mitochondrial fission and fusion, as well as mitochondrial cristae remodeling, biogenesis, autophagy, and oxidative stress. The mitochondrial fission-fusion and morphological changes of mitochondrial cristae maintain the integrity of the mitochondrial structure. The mitochondria maintain a "healthy" state by balancing biogenesis and autophagy, while reactive oxygen species can act as signaling molecules to regulate intracellular signaling. The excessive accumulation of lipids and lipid metabolism disorder in obesity leads to mitochondrial dyshomeostasis, which activate the apoptotic cascade and lead to myocardial remodeling. In this review, we provide an overview of the recent research progress on obesity-induced myocardial remodeling and its possible mechanism of mitochondrial dyshomeostasis.


Sujet(s)
Mitochondries/anatomopathologie , Dynamique mitochondriale , Myocarde/anatomopathologie , Obésité/physiopathologie , Humains , Espèces réactives de l'oxygène
9.
Life Sci ; 222: 1-12, 2019 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-30786250

RÉSUMÉ

AIMS: Obesity is associated with increased cardiovascular morbidity and mortality. It is accompanied by augmented O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of proteins via increasing hexosamine biosynthetic pathway (HBP) flux. However, the changes and regulation of the O-GlcNAc levels induced by obesity are unclear. MAIN METHODS: High fat diet (HFD) model was induced obesity in mice with or without the cholinergic drug pyridostigmine (PYR, 3 mg/kg/d) for 22 weeks and in vitro human umbilical vein endothelial cells (HUVECs) was treated with high glucose (HG, 30 mM) with or without acetylcholine (ACh). KEY FINDINGS: PYR significantly reduced body weight, blood glucose, and O-GlcNAcylation levels and attenuated vascular endothelial cells detachment in HFD-fed mice. HG addition induced endoplasmic reticulum (ER) stress and increased O-GlcNAcylation levels and apoptosis in HUVECs in a time-dependent manner. Additionally, HG decreased levels of phosphorylated AMP-activated protein kinase (AMPK). Interestingly, ACh significantly blocked damage to HUVECs induced by HG. Furthermore, the effects of ACh on HG-induced ER stress, O-GlcNAcylation, and apoptosis were prevented by treating HUVECs with 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, a selective M3 AChR antagonist) or compound C (Comp C, an AMPK inhibitor). Treatment with 5-aminoimidazole-4-carboxamide ribose (AICAR, an AMPK activator), 4-phenyl butyric acid (4-PBA, an ER stress inhibitor), and 6-diazo-5-oxonorleucine (DON, a GFAT antagonist) reproduced a similar effect with ACh. SIGNIFICANCE: Activation of cholinergic signaling ameliorated endothelium damage, reduced levels of ER stress, O-GlcNAcylation, and apoptosis in mice and HUVECs under obese conditions, which may function through M3 AChR-AMPK signaling.


Sujet(s)
Acétyl-glucosamine/métabolisme , Agents cholinergiques/pharmacologie , Stress du réticulum endoplasmique/physiologie , Endothélium vasculaire/métabolisme , Protein kinases/métabolisme , Récepteur muscarinique de type M3/métabolisme , AMP-activated protein kinase kinases , Acétylcholine/pharmacologie , Acétyl-glucosamine/antagonistes et inhibiteurs , Animaux , Anticholinestérasiques/pharmacologie , Alimentation riche en graisse/effets indésirables , Relation dose-effet des médicaments , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Endothélium vasculaire/effets des médicaments et des substances chimiques , Cellules endothéliales de la veine ombilicale humaine/effets des médicaments et des substances chimiques , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Humains , Mâle , Souris , Souris de lignée C57BL , Bromure de pyridostigmine/pharmacologie , Récepteur muscarinique de type M3/antagonistes et inhibiteurs
10.
Free Radic Biol Med ; 134: 119-132, 2019 04.
Article de Anglais | MEDLINE | ID: mdl-30633969

RÉSUMÉ

Insulin resistance and autonomic imbalance are important pathological processes in metabolic syndrome-induced cardiac remodeling. Recent studies determined that disruption of mitochondrial cristae shape is associated with myocardial ischemia; however, the change in cristae shape in metabolic syndrome-induced cardiac remodeling remains unclear. This study determined the effect of pyridostigmine (PYR), which reversibly inhibits cholinesterase to improve autonomic imbalance, on high-fat diet (HFD)-induced cardiac insulin resistance and explored the potential effect on the shape of mitochondrial cristae. Feeding of a HFD for 22 weeks led to an irregular and even lysed cristae structure in cardiac mitochondria, which contributed to decreased mitochondrial content and ATP production and increased oxygen species production, ultimately impairing insulin signaling and lipid metabolism. Interestingly, PYR enhanced vagal activity by increasing acetylcholine production and exerted mito-protective effects by activating the LKB1/AMPK/ACC signal pathway. Specifically, PYR upregulated OPA1 and Mfn1/2 expression, promoted the formation of the mitofilin/CHCHD3/Sam50 complex, and decreased p-Drp1 and Fis1 expression, resulting in tight and parallel cristae and increasing cardiac mitochondrial complex subunit expression and ATP generation as well as decreasing release of cytochrome C from mitochondria and oxidative damage. Furthermore, PYR improved glucose and insulin tolerance and insulin-stimulated Akt phosphorylation, decreased lipid toxicity, and ultimately ameliorated HFD-induced cardiac remodeling and dysfunction. In conclusion, PYR prevented cardiac and insulin insensitivity and remodeling by stimulating vagal activity to regulate mitochondrial cristae shape and function in HFD-induced metabolic syndrome in mice. These results provide novel insights for the development of a therapeutic strategy for obesity-induced cardiac dysfunction that targets mitochondrial cristae.


Sujet(s)
Modèles animaux de maladie humaine , Cardiopathies/prévention et contrôle , Insulinorésistance , Syndrome métabolique X/prévention et contrôle , Mitochondries du myocarde/physiologie , Membranes mitochondriales/composition chimique , Bromure de pyridostigmine/pharmacologie , Animaux , Anticholinestérasiques/pharmacologie , Alimentation riche en graisse/effets indésirables , Cardiopathies/étiologie , Mâle , Syndrome métabolique X/complications , Souris , Protéines mitochondriales/métabolisme , Forme de l'organelle
11.
Cardiovasc Res ; 115(3): 530-545, 2019 03 01.
Article de Anglais | MEDLINE | ID: mdl-30165480

RÉSUMÉ

AIMS: Cardiac hypertrophy is characterized by a shift in metabolic substrate utilization, but the molecular events underlying the metabolic remodelling remain poorly understood. We explored metabolic remodelling and mitochondrial dysfunction in cardiac hypertrophy and investigated the cardioprotective effects of choline. METHODS AND RESULTS: The experiments were conducted using a model of ventricular hypertrophy by partially banding the abdominal aorta of Sprague Dawley rats. Cardiomyocyte size and cardiac fibrosis were significantly increased in hypertrophic hearts. In vitro cardiomyocyte hypertrophy was induced by exposing neonatal rat cardiomyocytes to angiotensin II (Ang II) (10-6 M, 24 h). Choline attenuated the mito-nuclear protein imbalance and activated the mitochondrial-unfolded protein response (UPRmt) in the heart, thereby preserving the ultrastructure and function of mitochondria in the context of cardiac hypertrophy. Moreover, choline inhibited myocardial metabolic dysfunction by promoting the expression of proteins involved in ketone body and fatty acid metabolism in response to pressure overload, accompanied by the activation of sirtuin 3/AMP-activated protein kinase (SIRT3-AMPK) signalling. In vitro analyses demonstrated that SIRT3 siRNA diminished choline-mediated activation of ketone body metabolism and UPRmt, as well as inhibition of hypertrophic signals. Intriguingly, serum from choline-treated abdominal aorta banding models (where ß-hydroxybutyrate was increased) attenuated Ang II-induced myocyte hypertrophy, which indicates that ß-hydroxybutyrate is important for the cardioprotective effects of choline. CONCLUSION: Choline attenuated cardiac dysfunction by modulating the expression of proteins involved in ketone body and fatty acid metabolism, and induction of UPRmt; this was likely mediated by activation of the SIRT3-AMPK pathway. Taken together, these results identify SIRT3-AMPK as a key cardiac transcriptional regulator that helps orchestrate an adaptive metabolic response to cardiac stress. Choline treatment may represent a new therapeutic strategy for optimizing myocardial metabolism in the context of hypertrophy and heart failure.


Sujet(s)
AMP-Activated Protein Kinases/métabolisme , Choline/pharmacologie , Métabolisme énergétique/effets des médicaments et des substances chimiques , Hypertrophie ventriculaire gauche/prévention et contrôle , Mitochondries du myocarde/effets des médicaments et des substances chimiques , Myocytes cardiaques/effets des médicaments et des substances chimiques , Sirtuines/métabolisme , Réponse aux protéines mal repliées/effets des médicaments et des substances chimiques , Animaux , Cellules cultivées , Modèles animaux de maladie humaine , Acides gras/métabolisme , Fibrose , Hypertrophie ventriculaire gauche/enzymologie , Hypertrophie ventriculaire gauche/anatomopathologie , Hypertrophie ventriculaire gauche/physiopathologie , Corps cétoniques/métabolisme , Mitochondries du myocarde/enzymologie , Mitochondries du myocarde/anatomopathologie , Myocytes cardiaques/enzymologie , Myocytes cardiaques/anatomopathologie , Rat Sprague-Dawley , Transduction du signal , Fonction ventriculaire gauche/effets des médicaments et des substances chimiques , Remodelage ventriculaire/effets des médicaments et des substances chimiques
12.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1037-1050, 2018 Apr.
Article de Anglais | MEDLINE | ID: mdl-29309922

RÉSUMÉ

Obesity, a major contributor to the development of cardiovascular diseases, is associated with an autonomic imbalance characterized by sympathetic hyperactivity and diminished vagal activity. Vagal activation plays important roles in weight loss and improvement of cardiac function. Pyridostigmine is a reversible acetylcholinesterase inhibitor, but whether it ameliorates cardiac lipid accumulation and cardiac remodeling in rats fed a high-fat diet has not been determined. This study investigated the effects of pyridostigmine on high-fat diet-induced cardiac dysfunction and explored the potential mechanisms. Rats were fed a normal or high-fat diet and treated with pyridostigmine. Vagal discharge was evaluated using the BL-420S system, and cardiac function by echocardiograms. Lipid deposition and cardiac remodeling were determined histologically. Lipid utility was assessed by qPCR. A high-fat diet led to a significant reduction in vagal discharge and lipid utility and a marked increase in lipid accumulation, cardiac remodeling, and cardiac dysfunction. Pyridostigmine improved vagal activity and lipid metabolism disorder and cardiac remodeling, accompanied by an improvement of cardiac function in high-fat diet-fed rats. An increase in the browning of white adipose tissue in pyridostigmine-treated rats was also observed and linked to the expression of UCP-1 and CIDEA. Additionally, pyridostigmine facilitated activation of brown adipose tissue via activation of the SIRT-1/AMPK/PGC-1α pathway. In conclusion, a high-fat diet resulted in cardiac lipid accumulation, cardiac remodeling, and a significant decrease in vagal discharge. Pyridostigmine ameliorated cardiomyopathy, an effect related to reduced cardiac lipid accumulation, and facilitated the browning of white adipose tissue while activating brown adipose tissue.


Sujet(s)
Tissu adipeux/métabolisme , Cardiomyopathies/prévention et contrôle , Matières grasses alimentaires/effets indésirables , Bromure de pyridostigmine/pharmacologie , Nerf vague/physiopathologie , Tissu adipeux/anatomopathologie , Tissu adipeux/physiopathologie , Animaux , Cardiomyopathies/métabolisme , Cardiomyopathies/anatomopathologie , Cardiomyopathies/physiopathologie , Matières grasses alimentaires/pharmacologie , Métabolisme lipidique/effets des médicaments et des substances chimiques , Mâle , Protéines du muscle/métabolisme , Rats , Rat Sprague-Dawley , Transduction du signal/effets des médicaments et des substances chimiques , Nerf vague/métabolisme , Nerf vague/anatomopathologie
13.
Am J Physiol Cell Physiol ; 314(4): C504-C517, 2018 04 01.
Article de Anglais | MEDLINE | ID: mdl-29351410

RÉSUMÉ

Ca2+ signaling, particularly the mechanism via store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE), plays a critical role in the development of acute hypoxia-induced pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension. This study aimed to test the hypothesis that chronic hypoxia differentially regulates the expression of proteins that mediate SOCE and ROCE [stromal interacting molecule (STIM), Orai, and canonical transient receptor potential channel TRPC6] in pulmonary (PASMC) and coronary (CASMC) artery smooth muscle cells. The resting cytosolic [Ca2+] ([Ca2+]cyt) and the stored [Ca2+] in the sarcoplasmic reticulum were not different in CASMC and PASMC. Seahorse measurement showed a similar level of mitochondrial bioenergetics (basal respiration and ATP production) between CASMC and PASMC. Glycolysis was significantly higher in PASMC than in CASMC. The amplitudes of cyclopiazonic acid-induced SOCE and OAG-induced ROCE in CASMC are slightly, but significantly, greater than in PASMC. The frequency and the area under the curve of Ca2+ oscillations induced by ATP and histamine were also larger in CASMC than in PASMC. Na+/Ca2+ exchanger-mediated increases in [Ca2+]cyt did not differ significantly between CASMC and PASMC. The basal protein expression levels of STIM1/2, Orai1/2, and TRPC6 were higher in CASMC than in PASMC, but hypoxia (3% O2 for 72 h) significantly upregulated protein expression levels of STIM1/STIM2, Orai1/Orai2, and TRPC6 and increased the resting [Ca2+]cyt only in PASMC, but not in CASMC. The different response of essential components of store-operated and receptor-operated Ca2+ channels to hypoxia is a unique intrinsic property of PASMC, which is likely one of the important explanations why hypoxia causes pulmonary vasoconstriction and induces pulmonary vascular remodeling, but causes coronary vasodilation.


Sujet(s)
Canaux calciques/métabolisme , Signalisation calcique , Calcium/métabolisme , Muscles lisses vasculaires/métabolisme , Myocytes du muscle lisse/métabolisme , Canaux calciques/effets des médicaments et des substances chimiques , Signalisation calcique/effets des médicaments et des substances chimiques , Hypoxie cellulaire , Cellules cultivées , Vaisseaux coronaires/métabolisme , Métabolisme énergétique , Humains , Cinétique , Potentiels de membrane , Muscles lisses vasculaires/effets des médicaments et des substances chimiques , Myocytes du muscle lisse/effets des médicaments et des substances chimiques , Protéines tumorales/métabolisme , Protéine ORAI1/métabolisme , Artère pulmonaire/métabolisme , Molécule-1 d'interaction stromale/métabolisme , Membre-6 de la sous-famille C de canaux cationiques à potentiel de récepteur transitoire/métabolisme , Remodelage vasculaire , Vasoconstriction , Vasodilatation
14.
Sheng Li Xue Bao ; 69(5): 579-586, 2017 Oct 25.
Article de Chinois | MEDLINE | ID: mdl-29063106

RÉSUMÉ

Ischemic heart disease (IHD) is the life-threatening cardiovascular disease. Mitochondria have emerged as key participants and regulators of cellular energy demands and signal transduction. Mitochondrial quality is controlled by a number of coordinated mechanisms including mitochondrial fission, fusion and mitophagy, which plays an important role in maintaining healthy mitochondria and cardiac function. Recently, dysfunction of each process in mitochondrial quality control has been observed in the ischemic hearts. This review describes the mechanism of mitochondrial dynamics and mitophagy as well as its performance linked to myocardial ischemia. Moreover, in combination with our study, we will discuss the effect of vagal nerve on mitochondria in cardio-protection.


Sujet(s)
Mitochondries/physiologie , Ischémie myocardique/physiopathologie , Nerf vague/physiologie , Animaux , Dynamique mitochondriale , Mitophagie , Transduction du signal
15.
Clin Exp Pharmacol Physiol ; 44(12): 1192-1200, 2017 Dec.
Article de Anglais | MEDLINE | ID: mdl-28732106

RÉSUMÉ

It is well-accepted that inflammation plays an important role in the development of cardiac remodelling and that therapeutic approaches targeting inflammation can inhibit cardiac remodelling. Although a large amount of evidence indicates that activation of α7 nicotinic acetylcholine receptor (α7nAChR) causes an anti-inflammatory effect, the role of α7nAChR in cardiac remodelling and the underlying mechanism have not been established. To investigate the effect of the specific α7nAChR agonist, PNU282987, on cardiac remodelling induced by isoproterenol (ISO 60 mg/kg per day) in mice, the cardiomyocyte cross-sectional area (CSA) and collagen volume fraction were evaluated by hematoxylin and eosin (HE) and Masson staining, respectively. Cardiac function and ventricular wall thickness were measured by echocardiography. The protein expressions of collagen I, matrix metalloproteinase 9 (MMP-9), transforming growth factor ß1 (TGF-ß1), and Smad3 were analyzed by Western blot. ISO-induced cardiac hypertrophy, characterized by an increase in the heart weight/body weight ratio, CSA and ventricular wall thickness. Moreover, cardiac fibrosis indices, such as collagen volume fraction, MMP-9 and collagen I protein expression, were also increased by ISO. PNU282987 not only attenuated cardiac hypertrophy but also decreased the cardiac fibrosis induced by ISO. Furthermore, PNU282987 suppressed TGF-ß1 protein expression and the phosphorylation of Smad3 induced by ISO. In conclusion, PNU282987 ameliorated the cardiac remodelling induced by ISO, which may be related to the TGF-ß1/Smad3 pathway. These data imply that the α7nAChR may represent a novel therapeutic target for cardiac remodelling in many cardiovascular diseases.


Sujet(s)
Benzamides/usage thérapeutique , Composés bicycliques pontés/usage thérapeutique , Cardiomégalie/traitement médicamenteux , Agonistes nicotiniques/usage thérapeutique , Protéine Smad-3/métabolisme , Facteur de croissance transformant bêta-1/métabolisme , Remodelage ventriculaire/effets des médicaments et des substances chimiques , Récepteur nicotinique de l'acétylcholine alpha7/agonistes , Animaux , Benzamides/administration et posologie , Composés bicycliques pontés/administration et posologie , Cardiomégalie/métabolisme , Cardiomégalie/anatomopathologie , Isoprénaline/pharmacologie , Mâle , Souris de lignée BALB C , Myocarde/métabolisme , Myocarde/anatomopathologie , Agonistes nicotiniques/administration et posologie , Transduction du signal
16.
J Mol Cell Cardiol ; 107: 1-12, 2017 06.
Article de Anglais | MEDLINE | ID: mdl-28395930

RÉSUMÉ

The endoplasmic reticulum (ER) forms discrete junctions with the plasma membrane (PM) that play a critical role in the regulation of Ca2+ signaling during cellular bioenergetics, apoptosis and autophagy. We have previously confirmed that acetylcholine can inhibit ER stress and apoptosis after inflammatory injury. However, limited research has focused on the effects of acetylcholine on ER-PM junctions. In this work, we evaluated the structure and function of the supramolecular sodium-calcium exchanger 1 (NCX1)-transient receptor potential canonical 3 (TRPC3)-inositol 1,4,5-trisphosphate receptor 1 (IP3R1) complex, which is involved in regulating Ca2+ homeostasis during inflammatory injury. The width of the ER-PM junctions of human umbilical vein endothelial cells (HUVECs) was measured in nanometres using transmission electron microscopy and a fluorescent probe for Ca2+. Protein-protein interactions were assessed by immunoprecipitation. Ca2+ concentration was measured using a confocal microscope. An siRNA assay was employed to silence specific proteins. Our results demonstrated that the peripheral ER was translocated to PM junction sites when induced by tumour necrosis factor-alpha (TNF-α) and that NCX1-TRPC3-IP3R1 complexes formed at these sites. After down-regulating the protein expression of NCX1 or IP3R1, we found that the NCX1-mediated inflow of Ca2+ and the release of intracellular Ca2+ stores were reduced in TNF-α-treated cells. We also observed that acetylcholine attenuated the formation of NCX1-TRPC3-IP3R1 complexes and maintained calcium homeostasis in cells treated with TNF-α. Interestingly, the positive effects of acetylcholine were abolished by the selective M3AChR antagonist darifenacin and by AMPK siRNAs. These results indicate that acetylcholine protects endothelial cells from TNF-alpha-induced injury, [Ca2+]cyt overload and ER-PM interactions, which depend on the muscarinic 3 receptor/AMPK pathway, and that acetylcholine may be a new inhibitor for suppressing [Ca2+]cyt overload.


Sujet(s)
Inflammation/génétique , Récepteurs à l'inositol 1,4,5-triphosphate/génétique , Échangeur sodium-calcium/génétique , Canaux cationiques TRPC/génétique , Facteur de nécrose tumorale alpha/métabolisme , Acétylcholine/métabolisme , Apoptose/génétique , Calcium/métabolisme , Signalisation calcique/génétique , Réticulum endoplasmique/métabolisme , Stress du réticulum endoplasmique , Homéostasie/génétique , Cellules endothéliales de la veine ombilicale humaine/effets des médicaments et des substances chimiques , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Humains , Inflammation/métabolisme , Inflammation/anatomopathologie , Récepteurs à l'inositol 1,4,5-triphosphate/composition chimique , Complexes multiprotéiques/génétique , Complexes multiprotéiques/métabolisme , Petit ARN interférent/génétique , Échangeur sodium-calcium/composition chimique , Canaux cationiques TRPC/composition chimique
17.
J Cell Mol Med ; 21(9): 2106-2116, 2017 09.
Article de Anglais | MEDLINE | ID: mdl-28296184

RÉSUMÉ

Cardiac hypertrophy is associated with autonomic imbalance, characterized by enhanced sympathetic activity and withdrawal of parasympathetic control. Increased parasympathetic function improves ventricular performance. However, whether pyridostigmine, a reversible acetylcholinesterase inhibitor, can offset cardiac hypertrophy induced by pressure overload remains unclear. Hence, this study aimed to determine whether pyridostigmine can ameliorate pressure overload-induced cardiac hypertrophy and identify the underlying mechanisms. Rats were subjected to either sham or constriction of abdominal aorta surgery and treated with or without pyridostigmine for 8 weeks. Vagal activity and cardiac function were determined using PowerLab. Cardiac hypertrophy was evaluated using various histological stains. Protein markers for cardiac hypertrophy were quantitated by Western blot and immunoprecipitation. Pressure overload resulted in a marked reduction in vagal discharge and a profound increase in cardiac hypertrophy index and cardiac dysfunction. Pyridostigmine increased the acetylcholine levels by inhibiting acetylcholinesterase in rats with pressure overload. Pyridostigmine significantly attenuated cardiac hypertrophy based on reduction in left ventricular weight/body weight, suppression of the levels of atrial natriuretic peptide, brain natriuretic peptide and ß-myosin heavy chain, and a reduction in cardiac fibrosis. These effects were accompanied by marked improvement of cardiac function. Additionally, pyridostigmine inhibited the CaN/NFAT3/GATA4 pathway and suppressed Orai1/STIM1 complex formation. In conclusion, pressure overload resulted in cardiac hypertrophy, cardiac dysfunction and a significant reduction in vagal discharge. Pyridostigmine attenuated cardiac hypertrophy and improved cardiac function, which was related to improved cholinergic transmission efficiency (decreased acetylcholinesterase and increased acetylcholine), inhibition of the CaN/NFAT3/GATA4 pathway and suppression of the interaction of Orai1/STIM1.


Sujet(s)
Calcineurine/métabolisme , Cardiomégalie/traitement médicamenteux , Cardiomégalie/métabolisme , Pression , Bromure de pyridostigmine/administration et posologie , Bromure de pyridostigmine/usage thérapeutique , Transduction du signal , Animaux , Cardiomégalie/imagerie diagnostique , Cardiomégalie/physiopathologie , Facteur de transcription GATA-4/métabolisme , Tests de la fonction cardiaque , Hémodynamique/effets des médicaments et des substances chimiques , Mâle , Facteurs de transcription NFATC/métabolisme , Protéine ORAI1/métabolisme , Liaison aux protéines/effets des médicaments et des substances chimiques , Rat Sprague-Dawley , Molécule-1 d'interaction stromale/métabolisme , Facteurs temps , Nerf vague/effets des médicaments et des substances chimiques , Nerf vague/anatomopathologie
18.
J Cell Mol Med ; 21(1): 58-71, 2017 01.
Article de Anglais | MEDLINE | ID: mdl-27491814

RÉSUMÉ

Mitochondrial dynamics-fission and fusion-are associated with ischaemic heart disease (IHD). This study explored the protective effect of vagal nerve stimulation (VNS) against isoproterenol (ISO)-induced myocardial ischaemia in a rat model and tested whether VNS plays a role in preventing disorders of mitochondrial dynamics and function. Isoproterenol not only caused cardiac injury but also increased the expression of mitochondrial fission proteins [dynamin-related peptide1 (Drp1) and mitochondrial fission protein1 (Fis-1)) and decreased the expression of fusion proteins (optic atrophy-1 (OPA1) and mitofusins1/2 (Mfn1/2)], thereby disrupting mitochondrial dynamics and leading to increase in mitochondrial fragments. Interestingly, VNS restored mitochondrial dynamics through regulation of Drp1, Fis-1, OPA1 and Mfn1/2; enhanced ATP content and mitochondrial membrane potential; reduced mitochondrial permeability transition pore (MPTP) opening; and improved mitochondrial ultrastructure and size. Furthermore, VNS reduced the size of the myocardial infarction and ameliorated cardiomyocyte apoptosis and cardiac dysfunction induced by ISO. Moreover, VNS activated AMP-activated protein kinase (AMPK), which was accompanied by phosphorylation of Ca2+ /calmodulin-dependent protein kinase kinase ß (CaMKKß) during myocardial ischaemia. Treatment with subtype-3 of muscarinic acetylcholine receptor (M3 R) antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide or AMPK inhibitor Compound C abolished the protective effects of VNS on mitochondrial dynamics and function, suggesting that M3 R/CaMKKß/AMPK signalling are involved in mediating beneficial effects of VNS. This study demonstrates that VNS modulates mitochondrial dynamics and improves mitochondrial function, possibly through the M3 R/CaMKKß/AMPK pathway, to attenuate ISO-induced cardiac damage in rats. Targeting mitochondrial dynamics may provide a novel therapeutic strategy in IHD.


Sujet(s)
AMP-Activated Protein Kinases/métabolisme , Calcium-Calmodulin-Dependent Protein Kinase Kinase/métabolisme , Isoprénaline/pharmacologie , Dynamique mitochondriale/physiologie , Ischémie myocardique/induit chimiquement , Ischémie myocardique/métabolisme , Récepteur muscarinique de type M3/métabolisme , Animaux , Apoptose/physiologie , Mâle , Potentiel de membrane mitochondriale/physiologie , Mitochondries du myocarde/effets des médicaments et des substances chimiques , Mitochondries du myocarde/métabolisme , Dynamique mitochondriale/effets des médicaments et des substances chimiques , Protéines de transport de la membrane mitochondriale/métabolisme , Pore de transition de perméabilité mitochondriale , Infarctus du myocarde/induit chimiquement , Infarctus du myocarde/métabolisme , Lésion de reperfusion myocardique/induit chimiquement , Lésion de reperfusion myocardique/métabolisme , Phosphorylation/physiologie , Rats , Rat Sprague-Dawley , Transduction du signal/physiologie , Stimulation du nerf vague/méthodes
19.
Sheng Li Xue Bao ; 68(4): 517-24, 2016 Aug 25.
Article de Chinois | MEDLINE | ID: mdl-27546511

RÉSUMÉ

Calcium overload is one of the important mechanisms of cardiovascular disease. Endoplasmic reticulum is an important organelle which regulates intracellular calcium homeostasis by uptake, storage and mobilization of calcium. So it plays a critical role in regulation of intracellular calcium homeostasis. Endoplasmic reticulum, which is widely distributed in cytoplasm, has a large number of membrane junction sites. Recent studies have reported that these junction sites are distributed on plasma membrane and organelle membranes (mitochondria, lysosomes, Golgi apparatus, etc.), separately. They could form complexes to regulate calcium transport. In this review, we briefly outlined the recent research progresses of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease, which may offer a new strategy for prevention and treatment of cardiovascular disease.


Sujet(s)
Maladies cardiovasculaires , Membrane cellulaire , Réticulum endoplasmique , Homéostasie , Calcium , Humains
20.
Int Immunopharmacol ; 36: 86-93, 2016 Jul.
Article de Anglais | MEDLINE | ID: mdl-27107801

RÉSUMÉ

Periodontitis is a severe inflammatory response, leading to characteristic periodontal soft tissue destruction and alveolar bone resorption. Baicalin possesses potent anti-inflammatory activity; however, it is still unclear whether baicalin regulates toll-like receptor (TLR) 2/4 expression and downstream signaling during the process of periodontitis. In this study, the cervical area of the maxillary second molars of rats was ligated and inoculated with Porphyromonas gingivalis (P. gingivalis) for 4weeks to induce periodontitis. Some rats with periodontitis were treated intragastrically with baicalin (50, 100 or 200mg/kg/day) or vehicle for 4weeks. Compared with the sham group, the levels of TLR2, TLR4 and MyD88 expression and the p38 MAPK and NF-κB activation were up-regulated in the experimental periodontitis group (EPG), accompanied by marked alveolar bone loss and severe inflammation. Treatment with 100 or 200mg/kg/day baicalin dramatically reduced the alveolar bone loss, the levels of HMGB1, TNF-α, IL-1ß, and MPO expression, and the numbers of inflammatory infiltrates in the gingival tissues. Importantly, treatment with 100 or 200mg/kg/day baicalin mitigated the periodontitis-up-regulated TLR2, TLR4 and MyD88 expression, and the p38 MAPK and NF-κB activation. Hence, the blockage of the TLR2 and TLR4/MyD88/p38 MAPK/NF-κB signaling by baicalin may contribute to its anti-inflammatory effects in rat model of periodontitis. In conclusion, these novel findings indicate that baicalin inhibits the TLR2 and TLR4 expression and the downstream signaling and mitigates inflammatory responses and the alveolar bone loss in rat experimental periodontitis. Therefore, baicalin may be a potential therapeutic agent for treatment of periodontitis.


Sujet(s)
Anti-inflammatoires/usage thérapeutique , Infections à Bacteroidaceae/traitement médicamenteux , Flavonoïdes/usage thérapeutique , Facteur de différenciation myéloïde-88/métabolisme , Parodontite/traitement médicamenteux , Porphyromonas gingivalis/physiologie , Scutellaria baicalensis/immunologie , Récepteur de type Toll-2/métabolisme , Récepteur de type Toll-4/métabolisme , Animaux , Infections à Bacteroidaceae/immunologie , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Humains , Mâle , Modèles animaux , Facteur de différenciation myéloïde-88/génétique , Parodontite/immunologie , Rats , Rat Sprague-Dawley , Transduction du signal/effets des médicaments et des substances chimiques , Récepteur de type Toll-2/génétique , Récepteur de type Toll-4/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...