Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Plant Sci ; 15: 1430467, 2024.
Article de Anglais | MEDLINE | ID: mdl-38988640

RÉSUMÉ

The switch defective/sucrose non-fermentable (SWI/SNF) multisubunit complex plays an important role in the regulation of gene expression by remodeling chromatin structure. Three SWI/SNF complexes have been identified in Arabidopsis including BAS, SAS, and MAS. Many subunits of these complexes are involved in controlling plant development and stress response. However, the function of these complexes has hardly been studied in other plant species. In this study, we identified the subunits of the SWI/SNF complex in sorghum and analyzed their evolutionary relationships in six grass species. The grass species conserved all the subunits as in Arabidopsis, but gene duplication occurred diversely in different species. Expression pattern analysis in sorghum (Sorghum bicolor) showed that most of the subunit-encoding genes were expressed constitutively, although the expression level was different. Transactivation assays revealed that SbAN3, SbGIF3, and SbSWI3B possessed transactivation activity, which suggests that they may interact with the pre-initiation complex (PIC) to activate transcription. We chose 12 subunits in sorghum to investigate their interaction relationship by yeast two-hybrid assay. We found that these subunits displayed distinct interaction patterns compared to their homologs in Arabidopsis and rice. This suggests that different SWI/SNF complexes may be formed in sorghum to perform chromatin remodeling functions. Through the integrated analysis of MNase-seq and RNA-seq data, we uncovered a positive relationship between gene expression levels and nucleosome phasing. Furthermore, we found differential global nucleosome enrichments between leaves and roots, as well as in response to PEG treatment, suggesting that dynamics of nucleosome occupancy, which is probably mediated by the SWI/SNF complex, may play important roles in sorghum development and stress response.

2.
Plant Physiol Biochem ; 211: 108709, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38744082

RÉSUMÉ

The COMPASS-like complex, responsible for depositing H3K4 methylation, exhibits a conserved composition across yeast, plants, and animals, with functional analysis highlighting its crucial roles in plant development and stress response. In this study, we identified nine genes encoding four subunits of the COMPASS-like complex through homologous search. Phylogenetic analysis revealed the presence of two additional ASH2 genes in the sorghum genome, specifically expressed in endosperms, suggesting the formation of a unique COMPASS-like complex in sorghum endosperms. Y2H and BiFC protein-protein interaction tests demonstrated the interaction between SbRbBP5 and SbASH2A/B/C, while the association between other subunits appeared weak, possibly due to sequence variations in SbWDR5 or synergistic interactions among COMPASS-like complex subunits. The interaction between ATX1 and the C-Terminal Domain (CTD) of Pol II, reported in Arabidopsis, was not detected in sorghum. However, we made the novel discovery of transcriptional activation activity in RbBP5, which is conserved in sorghum, rice, and Arabidopsis, providing valuable insights into the mechanism by which the COMPASS-like complex regulates gene expression in plants.


Sujet(s)
Phylogenèse , Protéines végétales , Sorghum , Sorghum/génétique , Sorghum/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Régulation de l'expression des gènes végétaux
3.
Physiol Mol Biol Plants ; 28(4): 697-707, 2022 Apr.
Article de Anglais | MEDLINE | ID: mdl-35592480

RÉSUMÉ

In higher plants, sucrose synthase (Susy, EC 2.4.1.13) as an enzyme with a core function, involved in the synthesis and breakdown of sugars, and plays an important role in growth and metabolism. Although, the different genes encoding Susy isozyme proteins have been cloned and functionally verified in several plant species, to date detailed information about the Susy genes is lacking in Sorghum. Here, we demonstrated the identification of five novel Susy genes from the sorghum genome database. Sequence, structure and phylogenetic analyses of these five SbSusy genes revealed evolutionary conservation through Susy gene family members across Sorghum and other crop plants. The expression of sorghum Susy genes was investigated via transcriptome database in various developmental stages and different tissues. Further qRT-PCR was performed to reveal the induction of SbSusy genes under salt, drought and sugar induction. The results indicated that all Susy genes were differentially expressed in various tissues and highly associated with sucrose metabolism. This study shows a theoretical reference of Susy genes in Sorghum, which provides new insights for the knowledge of the evolution relationships, and basic information to help clarify the molecular mechanism of Susy synthase genes in Sorghum. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01166-8.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE