Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Nutr ; 9: 984695, 2022.
Article de Anglais | MEDLINE | ID: mdl-36276816

RÉSUMÉ

Type 2 diabetes mellitus (T2DM) is a health issue that causes serious worldwide economic problems. It has previously been reported that natural polysaccharides have been studied with regard to regulating the gut microbiota, which plays an important role in T2DM. Here, we investigate the effects of Morchella esculenta polysaccharide (MEP) on a high-fat diet (HFD) and streptozotocin (STZ)-induced T2DM in BALB/c mice. The administration of MEP effectively regulated hyperglycemia and hyperlipidemia and improved insulin sensitivity. We also determined an improvement in gut microbiota composition by 16sRNA pyrosequencing. Treatment with MEP showed an increase in beneficial bacteria, i.e., Lactobacillus and Firmicutes, while the proportion of the opportunistic bacteria Actinobacteria, Corynebacterium, and Facklamia decreased. Furthermore, the treatment of T2DM mice with MEP resulted in reduced endotoxemia and insulin resistance-related pro-inflammatory cytokines interleukin 1ß (IL-1ß), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Moreover, MEP treatment improved intestinal permeability by modulating the expression of the colon tight-junction proteins zonula occludens-1 (ZO-1), occludin, claudin-1, and mucin-2 protein (MUC2). Additionally, MEP administration affects the metagenome of microbial communities in T2DM mice by altering the functional metabolic pathways. All these findings suggested that MEP is a beneficial prebiotic associated with ameliorating the gut microbiota and its metabolites in T2DM.

2.
J Food Biochem ; 46(9): e14251, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35633198

RÉSUMÉ

Bioactive peptides are naturally found in various foods and were shown to have various distinct physiological as well as medicinal benefits. In this study shrimp peptide hydrolysate (SPH) was prepared to investigate its immunomodulatory effect against cyclophosphamide (CTX) induced immunosuppressed mice. The SPH effect was also analyzed on murine macrophage (RAW264.7 cells). The findings show that SPH stimulates macrophages to form multiple pseudopodia, has no cytotoxic effect, and increases phagocytic activity in RAW264.7 cells. Furthermore, the immunosuppressed in-vivo model illustrates the improvement in various aspects, that is body weight, escalation in immune organ index, and ameliorates histopathological transformation of thymus along with the spleen. SPH enhances cell-mediated immunity by facilitating splenocyte proliferation and inhibit excessive apoptosis. Moreover, the significant outcome had been observed with the upregulation of cytokines interferon-gamma (IFN-ϒ), interleukin-2 (IL-2) level and simultaneously downregulate certain genes include interleukin-4 (IL-4) and interleukin-10 (IL-10). Additionally, SPH expedites cellular immunity by enhancing the regulation of immunoglobulin A (IgA) and immunoglobulin M (IgM). However, these findings support the hypothesis that SPH is an effective immunomodulatory agent capable of preventing immune system hypofunction. It is necessary to investigate the detailed mechanism to rule out any unforeseen effects of SPH in future research. PRACTICAL APPLICATIONS: Chemotherapy medications, despite their dominating detrimental effects of damaging immunological organs such as the spleen and thymus, extend the treatment process as well as the destruction of the self-immune system. This study found that SPH is an effective immunomodulatory agent capable of avoiding immune organ hypofunction and improving cell mediate immunity by enhancing macrophage activation, phagocytosis, spleenocyte proliferation, suppressing apoptosis, and elevating cytokines and antibodies. As a result, SPH can be utilized as a nutritional and functional dietary supplement to boost immunological modulation in combination with chemotherapy medications in order to lessen their adverse effects.


Sujet(s)
Sujet immunodéprimé , Facteurs immunologiques , Animaux , Cyclophosphamide/effets indésirables , Cytokines , Modèles animaux de maladie humaine , Immunité , Facteurs immunologiques/pharmacologie , Souris , Peptides/pharmacologie
3.
Onco Targets Ther ; 14: 1821-1841, 2021.
Article de Anglais | MEDLINE | ID: mdl-33732000

RÉSUMÉ

Cancer is the second leading cause of mortality worldwide. Conventional therapies, including surgery, radiation, and chemotherapy, have limited success because of secondary resistance. Therefore, safe, non-resistant, less toxic, and convenient drugs are urgently required. Natural products (NPs), primarily sourced from medicinal plants, are ideal for cancer treatment because of their low toxicity and high success. NPs cure cancer by regulating different pathways, such as PI3K/AKT/mTOR, ER stress, JNK, Wnt, STAT3, MAPKs, NF-kB, MEK-ERK, inflammation, oxidative stress, apoptosis, autophagy, mitophagy, and necroptosis. Among the NPs, steroid saponins, including polyphyllins (I, II, D, VI, and VII), have potent pharmacological, analgesic, and anticancer activities for the induction of cytotoxicity. Recent research has demonstrated that polyphyllins (PPs) possess potent effects against different cancers through apoptosis, autophagy, inflammation, and necroptosis. This review summarizes the available studies on PPs against cancer to provide a basis for future research.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE