Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Int J Mol Sci ; 25(6)2024 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-38542159

RÉSUMÉ

This article discusses the design and analysis of a new chemical chemosensor for detecting mercury(II) ions. The chemosensor is a hydrazone made from 4-methylthiazole-5-carbaldehyde and fluorescein hydrazide. The structure of the chemosensor was confirmed using various methods, including nuclear magnetic resonance spectroscopy, infrared spectroscopy with Fourier transformation, mass spectroscopy, and quantum chemical calculations. The sensor's ability in the highly selective and sensitive discovery of Hg2+ ions in water was demonstrated. The detection limit for mercury(II) ions was determined to be 0.23 µM. The new chemosensor was also used to detect Hg2+ ions in real samples and living cells using fluorescence spectroscopy. Chemosensor 1 and its complex with Hg2+ demonstrate a significant tendency to enter and accumulate in cells even at very low concentrations.


Sujet(s)
Mercure , Métaux lourds , Polluants chimiques de l'eau , Fluorescéine , Eau , Colorants fluorescents/composition chimique , Polluants chimiques de l'eau/analyse , Mercure/analyse , Spectrométrie de fluorescence/méthodes
2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article de Anglais | MEDLINE | ID: mdl-37894849

RÉSUMÉ

The luminescent and photophysical properties of the etioporphyrin-I complex with indium(III) chloride, InCl-EtioP-I were experimentally studied at room and liquid nitrogen temperatures in pure and mixed toluene solutions. At 77 K, in a 1:2 mixture of toluene with diethyl ether, the quantum yield of phosphorescence reaches 10.2%, while the duration of phosphorescence is 17 ms. At these conditions, the ratio of phosphorescence-to-fluorescence integral intensities is equal to 26.1, which is the highest for complexes of this type. At 298 K, the quantum yield of the singlet oxygen generation is maximal in pure toluene (81%). Quantum-chemical calculations of absorption and fluorescence spectra at temperatures of 77 K and 298 K qualitatively coincide with the experimental data. The InCl-EtioP-I compound will further be used as a photoresponsive material in thin-film optoelectronic devices.


Sujet(s)
Étioporphyrines , Luminescence , Chlorures , Spectrométrie de fluorescence , Toluène
3.
Chempluschem ; 88(5): e202300141, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-37128752

RÉSUMÉ

A new complex of indium(III)chloride with etioporphyrin-I was synthesized and characterized. As with naturally occurring extraligated etioporphyrins, the InCl-EtioP-I spectrum in solution has a very strong B-band and a more than an order of magnitude weaker Q-band, but this difference diminishes in solid films of InCl-EtioP-I obtained by thermal evaporation in vacuum. In a solid, molecules have a tight convex-convex arrangement in a 2D double layered structure with interplane distance of 3.066 Å. The conductivity of films can easily be activated by the action of temperature or light. In the cells with symmetrical lateral contacts the photocurrent exceeds the dark current by about three orders of magnitude, with the contribution of photons in the Q-band range being greater than expected from the experimental or calculated absorption spectrum. The Q-bands contribute significantly to the photovoltaic effect in the ITO/InCl-EtioP-I/Al sandwich cells. Such cells show an untypically strong signal in the photodiode regime, which yields the spectral detectivity of 10^12 Jones.

4.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-37108230

RÉSUMÉ

The geometry and electronic structures of iron(II) complexes with porphyrin (FeP) and tetrabenzoporphyrin (FeTBP) in ground and low-lying excited electronic states are determined by DFT (PBE0/def2-TZVP) calculations and the complete active space self-consistent field (CASSCF) method, followed by the multiconfigurational quasi-degenerate second-order perturbation theory (MCQDPT2) approach to determine the dynamic electron correlation. The minima on the potential energy surfaces (PESs) of the ground (3A2g) and low-lying, high-spin (5A1g) electronic states correspond to the planar structures of FeP and FeTBP with D4h symmetry. According to the results of the MCQDPT2 calculations, the wave functions of the 3A2g and 5A1g electronic states are single determinant. The electronic absorption (UV-Vis) spectra of FeP and FeTBP are simulated within the framework of the simplified time-dependent density functional theory (sTDDFT) approach with the use of the long-range corrected CAM-B3LYP function. The most intensive bands of the UV-Vis spectra of FeP and FeTBP occur in the Soret near-UV region of 370-390 nm.


Sujet(s)
Porphyrines , Porphyrines/composition chimique , Fer/composition chimique , Théorie de la fonctionnelle de la densité , Électrons , Composés du fer II
5.
Int J Mol Sci ; 23(10)2022 May 11.
Article de Anglais | MEDLINE | ID: mdl-35628191

RÉSUMÉ

Electronic and geometric structures of metal-free, Al, Ga and In complexes with tetrapyrazinoporphyrazine (TPyzPA) and octachlorotetrapyrazinoporphyrazine (TPyzPACl8) were investigated by density functional theory (DFT) calculations and compared in order to study the effect of chlorination on the structure and properties of these macrocycles. The nature of the bonds between metal atoms and nitrogen atoms was described using the NBO-analysis. Simulation and interpretation of electronic spectra were performed with the use of time-dependent density functional theory (TDDFT). A description of calculated IR spectra was carried out based on the analysis of the distribution of the potential energy of normal vibrational coordinates.


Sujet(s)
Théorie quantique , Vibration , Électronique , Structure moléculaire , Spectrophotométrie IR
6.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-35055126

RÉSUMÉ

The electronic and molecular structures of metal-free tetrabenzoporphyrin (H2TBP) and its complexes with zinc, cadmium, aluminum, gallium and indium were investigated by density functional theory (DFT) calculations with a def2-TZVP basis set. A geometrical structure of ZnTBP and CdTBP was found to possess D4h symmetry; AlClTBP, GaClTBP and InClTBP were non-planar complexes with C4v symmetry. The molecular structure of H2TBP belonged to the point symmetry group of D2h. According to the results of the natural bond orbital (NBO) analysis, the M-N bonds had a substantial ionic character in the cases of the Zn(II) and Cd(II) complexes, with a noticeably increased covalent contribution for Al(III), Ga(III) and In(III) complexes with an axial -Cl ligand. The lowest excited states were computed with the use of time-dependent density functional theory (TDDFT) calculations. The model electronic absorption spectra indicated a weak influence of the nature of the metal on the Q-band position.


Sujet(s)
Complexes de coordination/composition chimique , Métalloporphyrines/composition chimique , Aluminium/composition chimique , Cadmium/composition chimique , Théorie de la fonctionnelle de la densité , Gallium/composition chimique , Indium/composition chimique , Structure moléculaire , Zinc/composition chimique
7.
Molecules ; 26(10)2021 May 15.
Article de Anglais | MEDLINE | ID: mdl-34063423

RÉSUMÉ

The Knudsen effusion method with mass spectrometric control of the vapor composition was used to study the possibility of a congruent transition to the gas phase and to estimate the enthalpy of sublimation of metal-free tetrakis(1,2,5-thiadiazolo)porphyrazine and its nickel complex (H2TTDPz and NiTTDPz, respectively). The geometrical and electronic structure of H2TTDPz and NiTTDPz in ground and low-lying excited electronic states were determined by DFT calculations. The electronic structure of NiTTDPz was studied by the complete active space (CASSCF) method, following accounting dynamic correlation by multiconfigurational quasi-degenerate second-order perturbation theory (MCQDPT2). A geometrical structure of D2h and D4h symmetry was obtained for H2TTDPz and NiTTDPz, respectively. According to data obtained by the MCQDPT2 method, the nickel complex possesses the ground state 1A1g, and the wave function of the ground state has the form of a single determinant. Electronic absorption and vibrational (IR and resonance Raman) spectra of H2TTDPz and NiTTDPz were studied experimentally and simulated theoretically.

8.
Inorg Chem ; 60(13): 9857-9868, 2021 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-34128654

RÉSUMÉ

Metal complexes of trithiadodecaazahexaphyrin (Hhp) that contain MII3O clusters inside a π-extended trianionic (Hhp3-) macrocycle have been prepared. Studies of the magnetic properties of NiII3O(Hhp) and CuII3O(Hhp) reveal a diamagnetic and EPR-silent trianionic (Hhp3-) macrocycle and diamagnetic NiII3(O2-) or paramagnetic CuII3(O2-) tetracations. The positive charge of MII3O(Hhp) is compensated by one acetate anion {MII3O(Hhp)}+(CH3CO2-). The three-electron reduction of {MII3O(Hhp)}+ yields {cryptand(Cs+)}2{NiII2NiIO(Hhp5-)}2-·2C7H8 (1) and {cryptand(Cs+)}2{CuII3O(Hhp•6-)}2-·C7H8 (2) crystalline salts. The magnetic properties of 1 reveal the formation of Hhp5- and the reduction of nickel(II) to the paramagnetic NiI ion (S = 1/2), which is accompanied by the formation of the {NiII2NiIO(Hhp5-)}2- dianion. As a result, the magnetic moment of 1 is 1.68 µB in the 20-220 K range, and a broad EPR signal of NiI was observed. The Hhp5- macrocycle has a singlet ground state, but the increase in the magnitude of the magnetic moment of 1 above 220 K is attributed to the population of the triplet excited state in Hhp5-. The {NiII2NiIO(Hhp5-)}2- dianion is transferred from the doublet excited state to the quartet excited state with an energy gap of 1420 ± 50 K. Salt 1 also shows an unusually strong low-energy NIR absorption, which was observed at 1000-2200 nm. In 2, a highly reduced Hhp•6- radical hexaanion (S = 1/2) coexists with a CuII3(O2-) cluster (S = 1/2) in the {CuII3O(Hhp•6-)}2- dianions. The dianions have a triplet ground state with antiferromagnetic exchange between two S = 1/2 spins with J = -6.4 cm-1. The reduction of Hhp in both salts equalizes the initially alternated C-N bonds, supporting the increase in the Hhp macrocycle electron delocalization.

9.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article de Anglais | MEDLINE | ID: mdl-35008747

RÉSUMÉ

The structure of a free nickel (II) octamethylporphyrin (NiOMP) molecule was determined for the first time through a combined gas-phase electron diffraction (GED) and mass spectrometry (MS) experiment, as well as through quantum chemical (QC) calculations. Density functional theory (DFT) calculations do not provide an unambiguous answer about the planarity or non-planar distortion of the NiOMP skeleton. The GED refinement in such cases is non-trivial. Several approaches to the inverse problem solution were used. The obtained results allow us to argue that the ruffling effect is manifested in the NiOMP molecule. The minimal critical distance between the central atom of the metal and nitrogen atoms of the coordination cavity that provokes ruffling distortion in metal porphyrins is about 1.96 Å.


Sujet(s)
Gaz/composition chimique , Modèles moléculaires , Nickel/composition chimique , Porphyrines/composition chimique , Théorie de la fonctionnelle de la densité , Conformation moléculaire , Thermodynamique
10.
Int J Mol Sci ; 21(8)2020 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-32331216

RÉSUMÉ

Electronic and geometric structures of Ca(II) and Zn(II) complexes with porphyrazine (Pz) and tetrakis(1,2,5-thiadiazole)porphyrazine (TTDPz) were investigated by density functional theory (DFT) calculations and compared. The perimeter of the coordination cavity was found to be practically independent on the nature of a metal and a ligand. According to the results of the natural bond orbital (NBO) analysis and quantum theory of atoms in molecules (QTAIM) calculations, Ca-N bonds possess larger ionic contributions as compared to Zn-N. The model electronic absorption spectra obtained with the use of time-dependent density functional theory (TDDFT) calculations indicate a strong bathochromic shift (~70 nm) of the Q-band with a change of Pz ligand by TTDPz for both Ca and Zn complexes. Additionally, CaTTDPz was synthesized and its electronic absorption spectrum was recorded in pyridine and acetone.


Sujet(s)
Calcium/composition chimique , Complexes de coordination/composition chimique , Théorie de la fonctionnelle de la densité , Ions/composition chimique , Pyridines/composition chimique , Thiadiazoles/composition chimique , Zinc/composition chimique , Modèles moléculaires , Structure moléculaire , Théorie quantique , Analyse spectrale
11.
Molecules ; 26(1)2020 Dec 29.
Article de Anglais | MEDLINE | ID: mdl-33383750

RÉSUMÉ

Electronic and geometric structures of Y, La and Lu complexes with porphyrazine (Pz) and tetrakis(1,2,5-thiadiazole)porphyrazine (TTDPz) were investigated by density functional theory (DFT) calculations and compared. The nature of the bonds between metal atoms and nitrogen atoms has been described using the analysis of the electron density distribution in the frame of Bader's quantum theory of atoms in molecule (QTAIM). Simulation and interpretation of electronic spectra were performed with use of time-dependent density functional theory (TDDFT) calculations. Description of calculated IR spectra was carried out based on the analysis of the distribution of the potential energy of normal vibrations by natural vibrational coordinates.


Sujet(s)
Complexes de coordination/composition chimique , Lanthane/composition chimique , Lutétium/composition chimique , Thiadiazoles/composition chimique , Yttrium/composition chimique , Théorie de la fonctionnelle de la densité , Électrons , Modèles moléculaires
12.
Chem Asian J ; 15(1): 61-65, 2020 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-31743582

RÉSUMÉ

Reduction of free-base [30]trithia-2,3,5,10,12,13,15,20,22,23,25,30-dodecaazahexaphyrin (H3 Hhp) yields {cryptand[2.2.2](K)}2 {(K)(H3 Hhp)2 }⋅4C6 H4 Cl2 (1) containing double-decker {(K)(H3 Hhp)2 }⋅2- radical dianions, whose structure was elucidated using X-ray diffraction. Potassium ion forms 12 short (K+ )⋅⋅⋅N(H3 Hhp) contacts with two H3 Hhp macrocycles in the 3.048-3.157 Šrange. Dianions have S=1/2 spin state manifesting an effective magnetic moment of 1.64 µB at 300 K and a narrow Lorentzian electron paramagnetic resonance signal. Quantum chemical calculations support the ionic nature of the (K+ )-N(H3 Hhp) interactions and the nearly equal distribution of the -1.5 charge over each macrocycle. H3 Hhp takes the role of an aza-crown ether in free-base reduced state and forms a new type of double-decker complex.

13.
Phys Chem Chem Phys ; 19(20): 13093-13100, 2017 May 24.
Article de Anglais | MEDLINE | ID: mdl-28485433

RÉSUMÉ

The gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene (1,8-BTMSA) was determined by a combined gas electron diffraction (GED)/mass spectrometry (MS) experiment as well as by quantum-chemical calculations (QC). DFT and dispersion corrected DFT calculations (DFT-D3) predicted two slightly different structures for 1,8-BTMSA concerning the mutual orientation of the two -C-C[triple bond, length as m-dash]C-SiMe3 units: away from one another or both bent to the same side. An attempt was made to distinguish these structures by GED structural analysis. To probe the structural rigidity, a set of Born-Oppenheimer molecular dynamics (BOMD) calculations has been performed at the DFT-D level. Vibrational corrections Δr = ra - re were calculated by two BOMD approaches: a microcanonically (NVE) sampled ensemble of 20 trajectories (BOMD(NVE)) and a canonical (NVT) trajectory thermostated by the Noose-Hoover algorithm (BOMD(NVT)). In addition, the conventional approach with both, rectilinear and curvilinear approximations (SHRINK program), was also applied. Radial distribution curves obtained with models using both MD approaches provide a better description of the experimental data than those obtained using the rectilinear (SHRINK) approximation, while the curvilinear approach turned out to lead to physically inacceptable results. The electronic structure of 1,8-BTMSA was investigated in terms of an NBO analysis and was compared with that of the earlier studied 1,8-bis(phenylethynyl)anthracene. Theoretical and experimental results lead to the conclusion that the (trimethylsilyl)ethynyl (TMSE) groups in 1,8-BTMSA are neither restricted in rotation nor in bending at the temperature of the GED experiment.

14.
Org Biomol Chem ; 13(33): 8893-905, 2015 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-26204511

RÉSUMÉ

1,8-Bis(phenylethynyl)anthracene (1,8-BPEA) was synthesized by a twofold Kumada cross-coupling reaction. The molecular structure of 1,8-BPEA was determined using a combination of gas-phase electron diffraction (GED), mass spectrometry (MS), quantum chemical calculations (QC) and single-crystal X-ray diffraction (XRD). Five rotamers of the molecule with different orientations of phenylethynyl groups were investigated by DFT calculations. According to these, molecules of C2 symmetry with co-directional rotation of the phenylethynyl groups are predicted to exist in the gas phase at 498 K. This was confirmed by a GED/MS experiment at this temperature. The bonding of this conformer was studied and described in terms of an NBO-analysis. Dispersion interactions in the solid state structure and in the free molecule are discussed. In the solid this symmetry is broken; the asymmetric unit of the single crystal contains 3.5 molecules and a herringbone packing motif of π-stacked dimers and trimers. The π-stacking in the dimers is between the anthracene units, and the trimers are linked by π-stacking between phenyl and anthracene units. The interaction between these stacks can be described in terms of σ(C-H)π interactions.

15.
Phys Chem Chem Phys ; 11(18): 3472-7, 2009 May 14.
Article de Anglais | MEDLINE | ID: mdl-19421550

RÉSUMÉ

The gas-phase molecular structure of oxotitanium phthalocyanine (TiOPc) has been studied by a synchronous gas electron diffraction and mass spectrometric experiment, and density functional theory calculations using the B3LYP hybrid method and cc-pVTZ basis sets. The molecule has an equilibrium structure of C4v symmetry with a convex macrocycle. The titanium atom is out-of-the-plane of the four central nitrogen atoms and forms a square pyramid with them, with the following parameters: r(Ti-N)=2.090(5) A, r(NN)=2.813(9) A (the side of the pyramid base), z(Ti)-z(N)=0.614 A (the height of the pyramid). Compared to solid-state crystal structures, the Ti-O distance in gas-phase TiOPc is shortened and the Ti-N distance is elongated, which can be attributed to significant intermolecular interaction in the crystals.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE