Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Int J Surg ; 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38896869

RÉSUMÉ

BACKGROUND: Laparoscopic cholecystectomy (LC) is the gold standard for treating symptomatic gallstones but carries inherent risks like bile duct injury (BDI). While critical view of safety (CVS) is advocated to mitigate BDI, its real-world adoption is limited. Additionally, significant variations in surgeon performance impede procedural standardization, highlighting the need for a feasible, innovative, and effective training approach. The aim of this study is to develop an Artificial Intelligence (AI)-assisted coaching program for LC to enhance surgical education and improve surgeon's performance. MATERIALS AND METHODS: We conducted a multi-center, randomized controlled trial from May 2022 to August 2023 to assess the impact of an AI-based coaching program, SmartCoach, on novice performing LC. Surgeons and patients meeting specific inclusion criteria were randomly assigned to either a coaching group with AI-enhanced feedback or a self-learning group. The primary outcome was assessed using the Laparoscopic Cholecystectomy Rating Form (LCRF), with secondary outcomes including surgical safety, efficiency, and adverse events. Statistical analyses were performed using SPSS, with significance set at P-value less than 0.05. RESULTS: Between May 2022 and August 2023, 22 surgeons were initially enrolled from 10 hospitals, with 18 completing the study. No demographic differences were noted between coaching and self-learning groups. In terms of surgical performance (LCRF scores), the coaching group showed significant improvement over time (31 to 40, P=0.008), outperforming the self-learning group by study end (40 vs 38, P=0.032). Significant improvements in CVS achievement were also noted in the coaching group (11% to 78%, P=0.021). Overall, the coaching program was well-received, outpacing traditional educational methods in both understanding and execution of CVS and participants in the intervention group expressed strongly satisfaction with the program. CONCLUSIONS: The AI-assisted surgical coaching program effectively improved surgical performance and safety for novice surgeons in LC procedures. The model holds significant promise for advancing surgical education.

2.
Sci Total Environ ; 897: 165365, 2023 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-37437633

RÉSUMÉ

One of the major causes of global mortality is respiratory diseases. Fine particulate matter (PM2.5) increased the risk of respiratory death in short-term exposure. PM2.5 is the chemical mixture of components with different health effects. The combined health effects of PM2.5 are determined by the role of each component and the potential interaction between components, but they have not been studied in short-term exposure. Sichuan Province (SC), with high respiratory mortality and heavy PM2.5 pollution, had distinctive regional differences in four regions in sources and proportions of PM2.5, so it was divided into four regions to explore the combined health effects of PM2.5 components on respiratory mortality in short-term exposure and to identify the main hazardous components. Due to the multicollinear, interactive, and nonlinear characteristics of the associations between PM2.5 components and respiratory mortality, Bayesian kernel machine regression (BKMR) was used to characterize the combined health effects, along with quantile-based g-computation (QGC) as a reference. Positive combined effects of PM2.5 were found in all four regions of Sichuan using BKMR with excess risks (ER) of 0.0101-0.0132 (95 % CI: 0.0093-0.0158) and in the central basin and northwest basin using QGC with relative risks (RR) of 1.0064 (95 % CI: 1.0039, 1.0089) and 1.0044 (95 % CI: 1.0022, 1.0066), respectively. In addition, the adverse health effect was larger in cold seasons than that in warm seasons, so vulnerable people should reduce outdoor activities in heavily polluted days, especially in the cold season. For the components of PM2.5, the BC and OM mainly from traffic, dominated the adverse health effects on respiratory mortality. Furthermore, NO3- might aggravate the adverse health effects of BC/OM. Therefore, BC/OM and NO3- should be focused together in air pollution control.


Sujet(s)
Polluants atmosphériques , Pollution de l'air , Maladies de l'appareil respiratoire , Humains , Polluants atmosphériques/toxicité , Polluants atmosphériques/analyse , Pollution de l'air/effets indésirables , Pollution de l'air/analyse , Théorème de Bayes , Matière particulaire/analyse , Exposition environnementale , Maladies de l'appareil respiratoire/induit chimiquement , Chine/épidémiologie
3.
Environ Pollut ; 316(Pt 2): 120630, 2023 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-36375581

RÉSUMÉ

The Chengyu Metropolitan Area (CYMA), located in the Sichuan Basin, is an unevenly developed region with high PM2.5 concentrations and a population of approximately 100 million. Although exposure inequality in air pollution has received increasing concern, no related research has been carried out in the CYMA to date. In this work, we used the concentration index to assess inequality of PM2.5 population-weighted exposure in the CYMA among different subgroups, including age, education, gender, occupation and GDP per capita in the city of residence. Our findings revealed that the non-disadvantaged subgroups (people aged 15-64, people with senior and higher education, people with high-income occupations and residents of cities with high GDP per capita) had a higher PM2.5 exposure in the CYMA, with the concentration indices of -0.03 (95% CI: 0.064, -0.001), -0.14 (95% CI: 0.221, -0.059), -0.15 (95% CI: 0.238, -0.056) and -0.27 (95% CI: 0.556, 0.012), opposite to previous studies in developed countries such as the United States and France. In addition, exposure differences among cities were much larger than those among populations in the CYMA. These findings may benefit the government in identifying disproportionately exposed subgroups in developing regions, and suggest that related measures should initially be carried out for cities exposed to high PM2.5 concentrations rather than for populations exposed to high PM2.5 concentrations.


Sujet(s)
Polluants atmosphériques , Pollution de l'air , Humains , États-Unis , Matière particulaire/analyse , Polluants atmosphériques/analyse , Pollution de l'air/analyse , Villes , Chine/épidémiologie , Démographie , Surveillance de l'environnement
4.
Chemosphere ; 310: 136786, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36257387

RÉSUMÉ

Fine particulate matter (PM2.5) has received worldwide attention due to its threat to public health. In the Sichuan Basin (SCB), PM2.5 is causing heavy health burdens due to its high concentrations and population density. Compared with other heavily polluted areas, less effort has been made to generate a full-coverage PM2.5 dataset of the SCB, in which the detailed PM2.5 spatiotemporal characteristics remain unclear. Considering commonly existing spatiotemporal autocorrelations, the top-of-atmosphere reflectance (TOAR) with a high coverage rate and other auxiliary data were employed to build commonly used random forest (RF) models to generate accurate hourly PM2.5 concentration predictions with a 0.05° × 0.05° spatial resolution in the SCB in 2016. Specifically, with historical concentrations predicted from a spatial RF (S-RF) and observed at stations, an alternative spatiotemporal RF (AST-RF) and spatiotemporal RF (ST-RF) were built in grids with stations (type 1). The predictions from the AST-RF in grids without stations (type 2) and observations in type 1 formed the PM2.5 dataset. The LOOCV R2, RMSE and MAE were 0.94/0.94, 8.71/8.62 µg∕m3 and 5.58/5.57 µg∕m3 in the AST-RF/ST-RF, respectively. Using the produced dataset, spatiotemporal analysis was conducted for a detailed understanding of the spatiotemporal characteristics of PM2.5 in the SCB. The PM2.5 concentrations gradually increased from the edge to the center of the SCB in spatial distribution. Two high-concentration areas centered on Chengdu and Zigong were observed throughout the year, while another high-concentration area centered on Dazhou was only observed in winter. The diurnal variation had double peaks and double valleys in the SCB. The concentrations were high at night and low in daytime, which suggests that characterizing the relationship between PM2.5 and adverse health outcomes by daily means might be inaccurate with most human activities conducted in daytime.


Sujet(s)
Polluants atmosphériques , Pollution de l'air , Humains , Polluants atmosphériques/analyse , Pollution de l'air/analyse , Surveillance de l'environnement , Matière particulaire/analyse , Chine
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE