Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Sujet principal
Gamme d'année
1.
Biotechnol Biofuels Bioprod ; 16(1): 117, 2023 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-37480079

RÉSUMÉ

BACKGROUND: Lignin is a major restriction factor for the industrial production of biomass resources, such as pulp and bioenergy. Eucalyptus is one of the most important sources of pulp and bioenergy. After polyploidization, the lignin content of forest trees is generally reduced, which is considered a beneficial genetic improvement. However, the differences in the lignin content between triploid and diploid Eucalyptus and the underlying regulatory mechanism are still unclear. RESULTS: We conducted a comprehensive analysis at the phenotypic, transcriptional and metabolite levels between Eucalyptus urophylla triploids and diploids to reveal the effects of polyploidization on the lignin content and lignin metabolic pathway. The results showed that the lignin content of Eucalyptus urophylla triploid stems was significantly lower than that of diploids. Lignin-related metabolites were differentially accumulated between triploids and diploids, among which coniferaldehyde, p-coumaryl alcohol, sinapaldehyde and coniferyl alcohol had significant positive correlations with lignin content, indicating that they might be primarily contributing metabolites. Most lignin biosynthetic genes were significantly downregulated, among which 11 genes were significantly positively correlated with the lignin content and above metabolites. Furthermore, we constructed a co-expression network between lignin biosynthetic genes and transcription factors based on weighted gene co-expression network analysis. The network identified some putative orthologues of secondary cell wall (SCW)-related transcription factors, among which MYB52, MYB42, NAC076, and LBD15 were significantly downregulated in Eucalyptus urophylla triploids. In addition, potential important transcription factors, including HSL1, BEE3, HHO3, and NAC046, also had high degrees of connectivity and high edge weights with lignin biosynthetic genes, indicating that they might also be involved in the variation of lignin accumulation between triploid and diploid Eucalyptus urophylla. CONCLUSIONS: The results demonstrated that some lignin-related metabolites, lignin biosynthetic genes and transcription factors in Eucalyptus urophylla triploids may be relatively sensitive in response to the polyploidization effect, significantly changing their expression levels, which ultimately correlated with the varied lignin content. The analysis of the underlying formation mechanism could provide beneficial information for the development and utilization of polyploid biomass resources, which will be also valuable for genetic improvement in other bioenergy plants.

2.
Front Plant Sci ; 13: 924044, 2022.
Article de Anglais | MEDLINE | ID: mdl-35832220

RÉSUMÉ

Polyploid breeding is an effective approach to improve plant biomass and quality. Both fast growth and dwarf types of in vitro or ex vitro plants are produced after polyploidization. However, little is known regarding the dwarf type mechanism in polyploids grown in vitro. In this study, the morphological and cytological characteristics were measured in tetraploid and diploid hybrid sweetgum (Liquidambar styraciflua × L. formosana) with the same genetic background. RNA sequencing (RNA-Seq) was used to analyse shoot and root variations between tetraploid and diploid plants; important metabolites were validated. The results showed that the shoot and root lengths were significantly shorter in tetraploids than in diploids after 25 d of culture. Most tetraploid root cells were wider and more irregular, and the length of the meristematic zone was shorter, while tetraploid cells were significantly larger than diploid cells. Differentially expressed genes (DEGs) were significantly enriched in the plant growth and organ elongation pathways, such as plant hormone biosynthesis and signal transduction, sugar and starch metabolism, and cell cycles. Hormone biosynthesis and signal transduction genes, such as YUCCA, TAA1, GH3, SAUR, CPS, KO, KAO, GA20ox, GA3ox, BAS1 and CYCD3, which help to regulate organ elongation, were generally downregulated. The auxin, gibberellin, and brassinolide (BL) contents in roots and stems were significantly lower in tetraploids than in diploids, which may greatly contribute to slow growth in the roots and stems of tetraploid regenerated plants. Exogenous gibberellic acid (GA3) and indole-3-acetic acid (IAA), which induced plant cell elongation, could significantly promote growth in the stems and roots of tetraploids. In summary, comparative transcriptomics and metabolite analysis showed that the slow growth of regenerated tetraploid hybrid sweetgum was strongly related to auxin and gibberellin deficiency. Our findings provide insights into the molecular mechanisms that underlie dwarfism in allopolyploid hybrid sweetgum.

3.
Int J Mol Sci ; 23(9)2022 05 08.
Article de Anglais | MEDLINE | ID: mdl-35563644

RÉSUMÉ

GATA transcription factors have been demonstrated to play key regulatory roles in plant growth, development, and hormonal response. However, the knowledge concerning the evolution of GATA genes in Eucalyptus urophylla and their trans-regulatory interaction is indistinct. Phylogenetic analysis and study of conserved motifs, exon structures, and expression patterns resolved the evolutionary relationships of these GATA proteins. Phylogenetic analysis showed that EgrGATAs are broadly distributed in four subfamilies. Cis-element analysis of promoters revealed that EgrGATA genes respond to light and are influenced by multiple hormones and abiotic stresses. Transcriptome analysis revealed distinct temporal and spatial expression patterns of EgrGATA genes in various tissues of E. urophylla S.T.Blake, which was confirmed by real-time quantitative PCR (RT-qPCR). Further research revealed that EurGNC and EurCGA1 were localized in the nucleus, and EurGNC directly binds to the cis-element of the EurGUN5 promoter, implying its potential roles in the regulation of chlorophyll synthesis. This comprehensive study provides new insights into the evolution of GATAs and could help to improve the photosynthetic assimilation and vegetative growth of E. urophylla at the genetic level.


Sujet(s)
Eucalyptus , Chlorophylle/génétique , Chlorophylle/métabolisme , Eucalyptus/génétique , Eucalyptus/métabolisme , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Génome végétal , Famille multigénique , Phylogenèse , Protéines végétales/génétique , Protéines végétales/métabolisme , Stress physiologique/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...