Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 398
Filtrer
1.
Chem Sci ; 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39246337

RÉSUMÉ

The conversion of CO2 and H2O into ethanol with high selectivity via photocatalysis is greatly desired for effective CO2 resource utilization. However, the sluggish and challenging C-C coupling hinders this goal, with the behavior of *CO holding the key. Here, a nanoconfined and tandem three-phase reaction system is established to simultaneously enhance the *CO concentration and interaction time, achieving an outstanding ethanol selectively of 94.15%. This system utilizes a tandem catalyst comprising an Ag core and a hydrophobic Cu2O shell. The hydrophobic Cu2O shell acts as a CO2 reservoir, effectively overcoming the CO2 mass-transfer limitation, while the Ag core facilitates the conversion of CO2 to CO. Subsequently, CO undergoes continuous reduction within the nanoconfined mesoporous channels of Cu2O. The synergy of enhanced mass transfer, nanoconfinement, and tandem reaction leads to elevated *CO concentrations and prolonged interaction time within the Cu2O shell, significantly reducing the energy barrier for *CO-*CO coupling compared to the formation of *CHO from *CO, as determined by density functional theory calculations. Consequently, C-C coupling preferentially occurs over *CHO formation, producing excellent ethanol selectivity. These findings provide valuable insights into the efficient production of C2+ compounds.

2.
Microb Pathog ; 195: 106889, 2024 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-39197689

RÉSUMÉ

BACKGROUND: Most sporadic colorectal cancers (CRC) develop through the adenoma-carcinoma sequence. While dysbiosis of the intestinal flora contributes to CRC's pathogenesis, precise microbial taxa closely associated with the colorectal adenoma-carcinoma sequence remain elusive. This meta-analysis aimed to summarize the features of intestinal flora in patients with AD and CRC. METHODS: PubMed, Embase, Cochrane Library, and Web of Science were searched for case-control studies comparing the relative abundance of gut microbiota in the feces of patients with AD, CRC, and healthy controls (HC) from inception to January 2024. The weighted mean difference (WMD) with a 95 % confidence interval (CI) was used to display the results. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the entailed literature. Publication bias was evaluated with the Egger's and Begg's tests. RESULTS: Eleven studies were included, involving 477 CRC patients, 628 AD patients, and 864 healthy controls. Compared with HC, the patients with AD had a significantly lower Chao 1 index (WMD = -30.17, 95 % CI [-41.10, -19.23], P < 0.001) and Shannon index (WMD = -0.11 95 % CI [-0.18, -0.04], P = 0.002). Compared with AD, the CRC patients had a significantly higher Chao1 index (WMD = 22.09, 95 % CI [7.59, 36.00], P = 0.003) and Shannon index (WMD = 0.08, 95 % CI [0.00, 0.15], P = 0.037). Enterobacteriaceae (WMD = 0.03 95 % CI [0.00,0.05], P = 0.047; WMD = 0.02 95 % CI [0.00,0.04], P = 0.027) significantly increased in the order of Control-AD-CRC, while that of Blautia (WMD = -0.00 95 % CI [-0.01, -0.00], P = 0.001; WMD = -0.00 95 % CI [-0.00, -0.00], P = 0.002) was reduced. Compared with HC, the relative abundance of Proteobacteria (WMD = 0.05 95 % CI [0.03,0.07], P < 0.001), Fusobacteria (WMD = 0.02 95 % CI [0.00,0.03], P = 0.042), Streptococcaceae (WMD = 0.03 95 % CI [0.01,0.05], P = 0.017), Prevotellaceae (WMD = 0.02 95 % CI [0.00,0.04], P = 0.040), and Escherichia-Shigella (WMD = 0.06 95 % CI [0.01, 0.11], P = 0.021) was enriched in the CRC group. The relative abundance of Alistipes (WMD = 0.00 95 % CI [0.00,0.01], P = 0.032) and Streptococcus (WMD = 0.00 95 % CI [0.00,0.00], P = 0.001) was increased in the AD vs HC. The relative abundance of Firmicutes (WMD = -0.07 95 % CI [-0.12, -0.03], P = 0.003), Bifidobacteria (WMD = -0.03 95 % CI [-0.05, -0.01], P = 0.016), and Klebsiella (WMD = -0.01 95 % CI [-0.01, -0.00], P = 0.001) was decreased in the CRC vs HC. Compared with AD, the relative abundance of Firmicutes (WMD = -0.04 95 % CI [-0.07, -0.02], P = 0.002), Peptostreptococcaceae (WMD = -0.03 95 % CI [-0.05, -0.00], P = 0.021), Lachnospiraceae (WMD = -0.04 95 % CI [-0.08,-0.00], P = 0.037), Ruminococcaceae (WMD = -0.06 95 % CI [-0.09,-0.03], P < 0.001), Faecalibacterium (WMD = -0.01 95 % CI [-0.02, -0.01], P = 0.001), and Lachnoclostridium (WMD = -0.02 95 % CI [-0.03, -0.00], P = 0.040) was decreased in the CRC group, while Proteobacteria (WMD = 0.04 95 % CI [0.02,0.05], P < 0.001) was increased. CONCLUSIONS: The dysbiosis characterized by reduced levels of short-chain fatty acid (SCFA)-producing bacteria, decreased anti-inflammatory bacteria, increased pro-inflammatory bacteria, and an elevation of bacteria with cytotoxic effects damaging to DNA may represent the specific microbial signature of colorectal adenoma/carcinoma. Further research is required to elucidate the mechanisms by which gut dysbiosis leads to the progression from AD to CRC and to explore the potential of specific microbiota markers in clinical treatment and non-invasive screening.

3.
Nature ; 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39198648

RÉSUMÉ

Human mutations in neuropeptide Y (NPY) have been linked to high body mass index but not altered dietary patterns1. Here we uncover the mechanism by which NPY in sympathetic neurons2,3 protects from obesity. Imaging of cleared mouse brown and white adipose tissue (BAT and WAT, respectively) established that NPY+ sympathetic axons are a smaller subset that mostly maps to the perivasculature; analysis of single-cell RNA sequencing datasets identified mural cells as the main NPY-responsive cells in adipose tissues. We show that NPY sustains the proliferation of mural cells, which are a source of thermogenic adipocytes in both BAT and WAT4-6. We found that diet-induced obesity leads to neuropathy of NPY+ axons and concomitant depletion of mural cells. This defect was replicated in mice with NPY abrogated from sympathetic neurons. The loss of NPY in sympathetic neurons whitened interscapular BAT, reducing its thermogenic ability and decreasing energy expenditure before the onset of obesity. It also caused adult-onset obesity of mice fed on a regular chow diet and rendered them more susceptible to diet-induced obesity without increasing food consumption. Our results indicate that, relative to central NPY, peripheral NPY produced by sympathetic nerves has the opposite effect on body weight by sustaining energy expenditure independently of food intake.

4.
Nat Commun ; 15(1): 7603, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39217143

RÉSUMÉ

Resistance to stress is a key determinant for mammalian functioning. While many studies have revealed neural circuits and substrates responsible for initiating and mediating stress responses, little is known about how the brain resists to stress and prevents overreactions. Here, we identified a previously uncharacterized neuropeptide Y (NPY) neuronal population in the dorsal raphe nucleus and ventrolateral periaqueductal gray region (DRN/vlPAG) with anxiolytic effects in male mice. NPYDRN/vlPAG neurons are rapidly activated by various stressful stimuli. Inhibiting these neurons exacerbated hypophagic and anxiety responses during stress, while activation significantly ameliorates acute stress-induced hypophagia and anxiety levels and transmits positive valence. Furthermore, NPYDRN/vlPAG neurons exert differential but synergic anxiolytic effects via inhibitory projections to the paraventricular thalamic nucleus (PVT) and the lateral hypothalamic area (LH). Together, our findings reveal a feedforward inhibition neural mechanism underlying stress resistance and suggest NPYDRN/vlPAG neurons as a potential therapeutic target for stress-related disorders.


Sujet(s)
Neurones , Neuropeptide Y , Stress psychologique , Animaux , Mâle , Neuropeptide Y/métabolisme , Neurones/métabolisme , Neurones/physiologie , Souris , Stress psychologique/physiopathologie , Souris de lignée C57BL , Anxiété/physiopathologie , Noyau dorsal du raphé/métabolisme , Noyau dorsal du raphé/physiologie , Substance grise centrale du mésencéphale/physiologie , Tronc cérébral/physiologie , Aire hypothalamique latérale/physiologie , Stress physiologique
5.
Free Radic Biol Med ; 224: 310-324, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39216560

RÉSUMÉ

Ferroptosis is a regulated cell death driven by iron-dependent lipid peroxidation and associated with drug resistance in lung adenocarcinoma (LUAD). It's found that aldehyde dehydrogenase 2 (ALDH2), which is highly mutated in East Asian populations, is correlated with response to chemotherapy in LUAD patients. The rs671 variant knock-in, downregulation, and pharmacological inhibition of ALDH2 render LUAD cells more vulnerable to ferroptosis inducers and platinum-based chemotherapy. ALDH2 inhibits ferroptosis through the detoxification of 4-hydroxynonenal and malondialdehyde, the product of lipid peroxidation, as well as the production of NADH at the same time. Besides, ALDH2 deficiency leads to elevated intracellular pH (pHi), thus inhibiting the ERK/CREB1/GPX4 axis. Interestingly, ALDH2 is also regulated by CREB1, and the ALDH2 enzyme activity was decreased with elevated pHi. What's more, the elevated pHi caused by impaired ALDH2 activity promotes the biosynthesis of lipid droplets to counteract ferroptosis. At last, the effect of ALDH2 on ferroptosis and chemosensitivity is confirmed in patient-derived organoids and xenograft models. Collectively, this study demonstrates that ALDH2 deficiency confers sensitivity to platinum through ferroptosis in LUAD, and targeting ALDH2 is a promising new strategy to enhance the sensitivity of platinum-based chemotherapy for the treatment of LUAD patients.

6.
Antioxidants (Basel) ; 13(7)2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39061935

RÉSUMÉ

Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured porcine oocytes before and after POA. Differentially expressed genes (DEGs) between fresh in vivo-matured oocyte (F_vivo) and aged in vivo-matured oocyte (A_vivo) and DEGs between fresh in vitro-matured oocyte (F_vitro) and aged in vitro-matured oocyte (A_vitro) were intersected to explore the co-effects of POA. It was found that "organelles", especially "mitochondria", were significantly enriched Gene Ontology (GO) terms. The expression of genes related to the "electron transport chain" and "cell redox homeostasis" pathways related to mitochondrial function significantly showed low expression patterns in both A_vivo and A_vitro groups. Weighted correlation network analysis was carried out to explore gene expression modules specific to A_vivo. Trait-module association analysis showed that the red modules were most associated with in vivo aging. There are 959 genes in the red module, mainly enriched in "RNA binding", "mRNA metabolic process", etc., as well as in GO terms, and "spliceosome" and "nucleotide excision repair" pathways. DNAJC7, IK, and DDX18 were at the hub of the gene regulatory network. Subsequently, the functions of DDX18 and DNAJC7 were verified by knocking down their expression at the germinal vesicle (GV) and Metaphase II (MII) stages, respectively. Knockdown at the GV stage caused cell cycle disorders and increase the rate of abnormal spindle. Knockdown at the MII stage resulted in the inefficiency of the antioxidant melatonin, increasing the level of intracellular oxidative stress, and in mitochondrial dysfunction. In summary, POA affects the organelle function of oocytes. A_vivo oocytes have some unique gene expression patterns. These genes may be potential anti-aging targets. This study provides a better understanding of the detailed mechanism of POA and potential strategies for improving the success rates of assisted reproductive technologies in pigs and other mammalian species.

7.
Commun Biol ; 7(1): 680, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38831092

RÉSUMÉ

Ferroptosis, a type of iron-dependent non-apoptotic cell death, plays a vital role in both tumor proliferation and resistance to chemotherapy. Here, our study demonstrates that MAX's Next Tango (MNT), by involving itself in the spermidine/spermine N1-acetyltransferase 1 (SAT1)-related ferroptosis pathway, promotes the proliferation of lung adenocarcinoma (LUAD) cells and diminishes their sensitivity to chemotherapy. Initially, an RNA-sequence screen of LUAD cells treated with ferroptosis inducers (FINs) reveals a significant increase in MNT expression, suggesting a potential link between MNT and ferroptosis. Overexpression of MNT in LUAD cells hinders changes associated with ferroptosis. Moreover, the upregulation of MNT promotes cell proliferation and suppresses chemotherapy sensitivity, while the knockdown of MNT has the opposite effect. Through the intersection of ChIP-Seq and ferroptosis-associated gene sets, and validation by qPCR and western blot, SAT1 is identified as a potential target of MNT. Subsequently, we demonstrate that MNT binds to the promoter sequence of SAT1 and suppresses its transcription by ChIP-qPCR and dual luciferase assays. Restoration of SAT1 levels antagonizes the efficacy of MNT to inhibit ferroptosis and chemosensitivity and promote cell growth in vitro as well as in vivo. In the clinical context, MNT expression is elevated in LUAD and is inversely connected with SAT1 expression. High MNT expression is also associated with poor patient survival. Our research reveals that MNT inhibits ferroptosis, and impairing chemotherapy effectiveness of LUAD.


Sujet(s)
Acetyltransferases , Adénocarcinome pulmonaire , Ferroptose , Tumeurs du poumon , Ferroptose/génétique , Ferroptose/effets des médicaments et des substances chimiques , Humains , Tumeurs du poumon/génétique , Tumeurs du poumon/métabolisme , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/traitement médicamenteux , Adénocarcinome pulmonaire/génétique , Adénocarcinome pulmonaire/anatomopathologie , Adénocarcinome pulmonaire/métabolisme , Adénocarcinome pulmonaire/traitement médicamenteux , Acetyltransferases/génétique , Acetyltransferases/métabolisme , Souris , Lignée cellulaire tumorale , Animaux , Résistance aux médicaments antinéoplasiques/génétique , Souris nude , Régulation de l'expression des gènes tumoraux , Prolifération cellulaire , Antinéoplasiques/pharmacologie , Tests d'activité antitumorale sur modèle de xénogreffe , Femelle , Souris de lignée BALB C , Mâle
8.
Commun Biol ; 7(1): 751, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38902322

RÉSUMÉ

Ferroptosis is a recently discovered form of cell death that plays an important role in tumor growth and holds promise as a target for antitumor therapy. However, evidence in the regulation of ferroptosis in lung adenocarcinoma (LUAD) remains elusive. Here, we show that retinoic acid receptor alpha (RARA) is upregulated with the treatment of ferroptosis inducers (FINs). Pharmacological activation of RARA increases the resistance of LUAD to ferroptosis according to cell viability and lipid peroxidation assays, while RARA inhibitor or knockdown (KD) does the opposite. Through transcriptome sequencing in RARA-KD cells and chromatin immunoprecipitation (CHIP)-Seq data, we identify thioredoxin (TXN) and protein phosphatase 1 F (PPM1F) as downstream targets of RARA, both of which inhibit ferroptosis. We confirm that RARA binds to the promotor region of TXN and PPM1F and promotes their transcription by CHIP-qPCR and dual-luciferase assays. Overexpression of TXN and PPM1F reverses the effects of RARA knockdown on ferroptosis in vitro and vivo. Clinically, RARA knockdown or inhibitor increases cells' sensitivity to pemetrexed and cisplatin (CDDP). Immunohistochemistry (IHC) of LUAD from our cohort shows the same expression tendency of RARA and the downstream targets. Our study uncovers that RARA inhibits ferroptosis in LUAD by promoting TXN and PPM1F, and inhibiting RARA-TXN/PPM1F axis represents a promising strategy for improving the efficacy of FINs or chemotherapy in the treatment of LUAD patients.


Sujet(s)
Adénocarcinome pulmonaire , Ferroptose , Tumeurs du poumon , Thiorédoxines , Ferroptose/effets des médicaments et des substances chimiques , Ferroptose/génétique , Humains , Adénocarcinome pulmonaire/génétique , Adénocarcinome pulmonaire/traitement médicamenteux , Adénocarcinome pulmonaire/anatomopathologie , Adénocarcinome pulmonaire/métabolisme , Thiorédoxines/métabolisme , Thiorédoxines/génétique , Tumeurs du poumon/génétique , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/métabolisme , Tumeurs du poumon/anatomopathologie , Animaux , Souris , Lignée cellulaire tumorale , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Souris nude , Femelle , Mâle
9.
Cryobiology ; 115: 104892, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38593909

RÉSUMÉ

Refreezing the remaining genetic resources after in vitro fertilization (IVF) can conserve genetic materials. However, the precise damage inflicted by repeated freezing and thawing on bovine sperm and its underlying mechanism remain largely unexplored. Thus, this study investigates the impact of repeated freeze-thaw cycles on sperm. Our findings indicate that such cycles significantly reduce sperm viability and motility. Furthermore, the integrity of the sperm plasma membrane and acrosome is compromised during this process, exacerbating the advanced apoptosis triggered by oxidative stress. Additionally, transmission electron microscopy exposed severe damage to the plasma membranes of both the sperm head and tail. Notably, the "9 + 2" structure of the tail was disrupted, along with a significant decrease in the level of the axonemal protein DNAH10, leading to reduced sperm motility. IVF outcomes revealed that repeated freeze-thaw cycles considerably impair sperm fertilization capability, ultimately reducing the blastocyst rate. In summary, our research demonstrates that repeated freeze-thaw cycles lead to a decline in sperm viability and motility, attributed to oxidative stress-induced apoptosis and DNAH10-related dynamic deficiency. As a result, the utility of semen is compromised after repeated freezing.


Sujet(s)
Apoptose , Cryoconservation , Fécondation in vitro , Congélation , Stress oxydatif , Conservation de semence , Mobilité des spermatozoïdes , Spermatozoïdes , Animaux , Mâle , Bovins , Cryoconservation/médecine vétérinaire , Cryoconservation/méthodes , Conservation de semence/médecine vétérinaire , Conservation de semence/méthodes , Spermatozoïdes/physiologie , Fécondation in vitro/médecine vétérinaire , Congélation/effets indésirables , Membrane cellulaire , Survie cellulaire , Acrosome
10.
Chin Med ; 19(1): 58, 2024 Apr 07.
Article de Anglais | MEDLINE | ID: mdl-38584284

RÉSUMÉ

BACKGROUND: Danggui Sini decoction (DSD), a traditional Chinese medicine formula, has the function of nourishing blood, warming meridians, and unblocking collaterals. Our clinical and animal studies had shown that DSD can effectively protect against oxaliplatin (OXA)-induced peripheral neuropathy (OIPN), but the detailed mechanisms remain uncertain. Multiple studies have confirmed that gut microbiota plays a crucial role in the development of OIPN. In this study, the potential mechanism of protective effect of DSD against OIPN by regulating gut microbiota was investigated. METHODS: The neuroprotective effects of DSD against OIPN were examined on a rat model of OIPN by determining mechanical allodynia, biological features of dorsal root ganglia (DRG) as well as proinflammatory indicators. Gut microbiota dysbiosis was characterized using 16S rDNA gene sequencing and metabolism disorders were evaluated using untargeted and targeted metabolomics. Moreover the gut microbiota mediated mechanisms were validated by antibiotic intervention and fecal microbiota transplantation. RESULTS: DSD treatment significantly alleviated OIPN symptoms by relieving mechanical allodynia, preserving DRG integrity and reducing proinflammatory indicators lipopolysaccharide (LPS), IL-6 and TNF-α. Besides, DSD restored OXA induced intestinal barrier disruption, gut microbiota dysbiosis as well as systemic metabolic disorders. Correlation analysis revealed that DSD increased bacterial genera such as Faecalibaculum, Allobaculum, Dubosiella and Rhodospirillales_unclassified were closely associated with neuroinflammation related metabolites, including positively with short-chain fatty acids (SCFAs) and sphingomyelin (d18:1/16:0), and negatively with pi-methylimidazoleacetic acid, L-glutamine and homovanillic acid. Meanwhile, antibiotic intervention apparently relieved OIPN symptoms. Furthermore, fecal microbiota transplantation further confirmed the mediated effects of gut microbiota. CONCLUSION: DSD alleviates OIPN by regulating gut microbiota and potentially relieving neuroinflammation related metabolic disorder.

11.
Nat Commun ; 15(1): 2461, 2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38504107

RÉSUMÉ

Targeting ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal overload of lipid peroxides, in cancer therapy is impeded by our limited understanding of the intersection of tumour's metabolic feature and ferroptosis vulnerability. In the present study, arginine is identified as a ferroptotic promoter using a metabolites library. This effect is mainly achieved through arginine's conversion to polyamines, which exerts their potent ferroptosis-promoting property in an H2O2-dependent manner. Notably, the expression of ornithine decarboxylase 1 (ODC1), the critical enzyme catalysing polyamine synthesis, is significantly activated by the ferroptosis signal--iron overload--through WNT/MYC signalling, as well as the subsequent elevated polyamine synthesis, thus forming a ferroptosis-iron overload-WNT/MYC-ODC1-polyamine-H2O2 positive feedback loop that amplifies ferroptosis. Meanwhile, we notice that ferroptotic cells release enhanced polyamine-containing extracellular vesicles into the microenvironment, thereby further sensitizing neighbouring cells to ferroptosis and accelerating the "spread" of ferroptosis in the tumour region. Besides, polyamine supplementation also sensitizes cancer cells or xenograft tumours to radiotherapy or chemotherapy through inducing ferroptosis. Considering that cancer cells are often characterized by elevated intracellular polyamine pools, our results indicate that polyamine metabolism exposes a targetable vulnerability to ferroptosis and represents an exciting opportunity for therapeutic strategies for cancer.


Sujet(s)
Ferroptose , Surcharge en fer , Tumeurs , Humains , Polyamines/métabolisme , Ferroptose/génétique , Peroxyde d'hydrogène , Lignée cellulaire tumorale , Arginine , Tumeurs/génétique
12.
Discov Med ; 36(182): 546-558, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38531795

RÉSUMÉ

BACKGROUND: Identifying the key molecular targets in hypopharynx squamous cell carcinoma (HSCC) is crucial for understanding this prevalent and highly fatal type of head and neck tumor. The study aims to enhance comprehension of the HSCC process by accurately identifying these key molecular targets. MATERIALS AND METHODS: In this study, we examined 47 clinical tissue samples from individuals diagnosed with HSCC using RNA-seq high-throughput assay. Quantitative real-time PCR (RT-PCR) was used to compare long non-coding RNA (lncRNA) bladder cancer-associated transcript 1 (BLACAT1) expression in HSCC tissues versus adjacent non-tumor tissues. The influence of highly expressed lncRNA BLACAT1 on prognostic survival was assessed. Subsequently, we cultured human pharynx squamous cell carcinoma FaDu cells. After reducing lncRNA BLACAT1 expression, we assessed FaDu cell proliferation, invasion, and migration using Cell Counting kit-8 (CCK-8) assay, colony formation assay, EUD assay, Transwell assay, and scratch assay. Additionally, liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS) and western blotting analysis were used to analyze proteins that bind to lncRNA BLACAT1. During in vivo experiments, mice received subcutaneous injections of FaDu cells transfected with lncRNA BLACAT1 shRNA or Scr plasmid (Control) in the dorsal region to observe and compare tumor growth. Lastly, tumor tissues underwent hematoxylin-eosin (HE) and immunohistochemical (IHC) staining. RESULTS: lncRNA BLACAT1 was screened as one of the most significant genes among the group of differentially expressed lncRNAs. RT-PCR exhibited elevated lncRNA BLACAT1 expression in HSCC tissues when compared to non-tumor tissues (p < 0.001). Furthermore, increased lncRNA BLACAT1 expression correlated with advanced clinical stages, heightened lymphatic invasion, and a poor prognosis. Subsequent in vitro experiments solidified our observations, demonstrating lncRNA BLACAT1's promotion of HSCC cell proliferation (p < 0.05), migration (p < 0.01), and invasion (p < 0.01) compared with the control group. Moreover, LC-MS/MS identified signal transducer and activator of transcription 3 (STAT3) and Prohibitin 2 (PHB2) as lncRNA BLACAT1-binding proteins and sh-lncRNA BLACAT1 inhibits STAT3/AKT phosphorylation (p < 0.01) and alters the subcellular distribution of PHB2 and P21 compared with the control group (p < 0.01). Moreover, in vivo experiments showed that lncRNA BLACAT1 inhibition suppresses tumorigenicity in an HSCC xenograft model compared to the control group (p < 0.01). CONCLUSIONS: lncRNA BLACAT1 is highly expressed in HSCC tumor tissues and plays a crucial role in the development of HSCC in vitro and in vivo. This increased expression may be caused by STAT3/AKT pathway activation, consequently inhibiting P21 expression through PHB2.


Sujet(s)
Carcinome épidermoïde , Tumeurs de la tête et du cou , ARN long non codant , Tumeurs de la vessie urinaire , Humains , Animaux , Souris , ARN long non codant/génétique , Chromatographie en phase liquide , Partie laryngée du pharynx , Protéines proto-oncogènes c-akt/génétique , Spectrométrie de masse en tandem , Carcinome épidermoïde/génétique , Tumeurs de la vessie urinaire/génétique , Prolifération cellulaire/génétique , Lignée cellulaire tumorale , Mouvement cellulaire/génétique , Régulation de l'expression des gènes tumoraux
13.
Biochem Biophys Res Commun ; 706: 149747, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38479243

RÉSUMÉ

Nobiletin is a natural flavonoid found in citrus fruits with beneficial effects, including anti-inflammatory, anti-cancer and anti-oxidation effects. The aim of this study was to investigate whether nobiletin improves mitochondrial function in porcine oocytes and examine the underlying mechanism. Oocytes enclosed by cumulus cells were cultured in TCM-199 for 44 h with 0.1% dimethyl sulfoxide (control), or supplemented with 5, 10, 25, and 50 µM of nobiletin (Nob5, Nob10, Nob25, and Nob50, respectively). Oocyte maturation rate was significantly enhanced in Nob10 (70.26 ± 0.45%) compared to the other groups (control: 60.12 ± 0.47%; Nob5: 59.44 ± 1.63%; Nob25: 63.15 ± 1.38%; Nob50: 46.57 ± 1.19%). The addition of nobiletin reduced the levels of reactive oxygen species and increased glutathione levels. Moreover, Nob10 promoted mitochondrial biogenesis by upregulating the protein levels of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α). This resulted in an increase in the number of active mitochondria, mitochondrial DNA copy number, mitochondrial membrane potential, and ATP production, thereby enhancing mitochondrial function. The protein level of p53 decreased, followed by the phosphorylation of B-cell lymphoma 2, suggesting a reduction in mitochondria-mediated apoptosis in the Nob10 group. Additionally, the release of cytochrome c from the mitochondria was significantly diminished along with a decrease in the protein expression of caspase 3. Thus, nobiletin has a great potential to promote the in vitro maturation of porcine oocytes by suppressing oxidative stress and promoting mitochondrial function through the upregulation of the SIRT1/PGC-1α signaling pathway.


Sujet(s)
Flavones , Mitochondries , Sirtuine-1 , Animaux , Suidae , Sirtuine-1/métabolisme , Mitochondries/métabolisme , Transduction du signal , Ovocytes/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme
14.
Cell Rep ; 43(2): 113771, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38335093

RÉSUMÉ

EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) have achieved clinical success in lung adenocarcinoma (LUAD). However, tumors often show profound but transient initial response and then gain resistance. We identify transcription factor ZNF263 as being significantly decreased in osimertinib-resistant or drug-tolerant persister LUAD cells and clinical residual tumors. ZNF263 overexpression improves the initial response of cells and delays the formation of persister cells with osimertinib treatment. We further show that ZNF263 binds and recruits DNMT1 to the EGFR gene promoter, suppressing EGFR transcription with DNA hypermethylation. ZNF263 interacts with nuclear EGFR, impairing the EGFR-STAT5 interaction to enhance AURKA expression. Overexpressing ZNF263 also makes tumor cells with wild-type EGFR expression or refractory EGFR mutations more susceptible to EGFR inhibition. More importantly, lentivirus or adeno-associated virus (AAV)-mediated ZNF263 overexpression synergistically suppresses tumor growth and regrowth with osimertinib treatment in xenograft animal models. These findings suggest that enhancing ZNF263 may achieve complete response in LUAD with EGFR-targeted therapies.


Sujet(s)
Acrylamides , Adénocarcinome pulmonaire , Dérivés de l'aniline , Indoles , Tumeurs du poumon , Pyrimidines , Animaux , Humains , Facteurs de transcription/génétique , Maladie résiduelle , Adénocarcinome pulmonaire/traitement médicamenteux , Adénocarcinome pulmonaire/génétique , Récepteurs ErbB/génétique , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/génétique , Protéines de liaison à l'ADN
15.
J Exp Clin Cancer Res ; 43(1): 63, 2024 Feb 29.
Article de Anglais | MEDLINE | ID: mdl-38424624

RÉSUMÉ

BACKGROUND: Lung cancer is one of the most common tumors in the world, and metastasis is one of the major causes of tumor-related death in lung cancer patients. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are frequently associated with tumor metastasis in human cancers. However, the regulatory mechanisms of TAMs in lung cancer metastasis remain unclear. METHODS: Single-cell sequencing analysis of lung cancer and normal tissues from public databases and from 14 patients who underwent surgery at Zhongshan Hospital was performed. In vitro co-culture experiments were performed to evaluate the effects of TAMs on lung cancer migration and invasion. Changes in the expression of IL-6, STAT3, C/EBPΒ, and EMT pathway were verified using RT-qPCR, western blotting, and immunofluorescence. Dual luciferase reporter assays and ChIP were used to reveal potential regulatory sites on the transcription factor sets. In addition, the effects of TAMs on lung cancer progression and metastasis were confirmed by in vivo models. RESULTS: TAM infiltration is associated with tumor progression and poor prognosis. IL-6 secreted by TAMs can activate the JAK2/STAT3 pathway through autocrine secretion, and STAT3 acts as a transcription factor to activate the expression of C/EBPß, which further promotes the transcription and expression of IL-6, forming positive feedback loops for IL6-STAT3-C/EBPß-IL6 in TAMs. IL-6 secreted by TAMs promotes lung cancer progression and metastasis in vivo and in vitro by activating the EMT pathway, which can be attenuated by the use of JAK2/STAT3 pathway inhibitors or IL-6 monoclonal antibodies. CONCLUSIONS: Our data suggest that TAMs promote IL-6 expression by forming an IL6-STAT3-C/EBPß-IL6 positive feedback loop. Released IL-6 can induce the EMT pathway in lung cancer to enhance migration, invasion, and metastasis. The use of IL-6-neutralizing antibody can partially counteract the promotion of LUAD by TAMs. A novel mechanism of macrophage-promoted tumor progression was revealed, and the IL6-STAT3-C/EBPß-IL6 signaling cascade may be a potential therapeutic target against lung cancer.


Sujet(s)
Adénocarcinome pulmonaire , Tumeurs du poumon , Humains , Interleukine-6/métabolisme , Macrophages associés aux tumeurs/métabolisme , Lignée cellulaire tumorale , Rétroaction , Adénocarcinome pulmonaire/génétique , Tumeurs du poumon/génétique , Facteurs de transcription/métabolisme , Facteur de transcription STAT-3/génétique , Facteur de transcription STAT-3/métabolisme , Microenvironnement tumoral , Transition épithélio-mésenchymateuse
16.
Ann Surg Treat Res ; 106(2): 68-77, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38318090

RÉSUMÉ

Purpose: This study aimed to investigate whether nighttime elective surgery influenced the short-term outcomes and prognosis of hepatocellular carcinoma (HCC) patients. Methods: The 1,339 HCC patients who underwent hepatectomy were divided into the daytime surgery group (8 a.m.-6 p.m., n = 1,105) and the nighttime surgery group (after 6 p.m., n = 234) based on the start time of surgery. The 1:2 propensity score matching (PSM) analysis was used to control confounding factors. The short-term outcomes of HCC patients in the 2 groups were compared before and after PSM. Factors associated with major complications (Clavien-Dindo grade, ≥III) and textbook oncologic outcomes (TOO) were separately identified by multivariable logistic regression based on variables screened via least absolute shrinkage and selection operator (LASSO). The Kaplan-Meier method was used to analyze overall survival (OS) and recurrence-free survival (RFS). Results: TOO was achieved after surgery in 897 HCC patients. HCC patients in the nighttime surgery group had a higher body mass index (P = 0.010). After 1:2 PSM, the baseline characteristics of patients between the 2 groups were similar. Short-term outcomes in HCC patients were comparable both before and after PSM (all Ps > 0.05), as were TOO in the 2 groups before (P = 0.673) and after PSM (P = 0.333). In our LASSO-logistic regression, nighttime surgery was not an independent factor associated with major complications or TOO. Both groups also had similar OS (P = 0.950) and RFS (P = 0.740) after PSM. Conclusion: Our study revealed the safety of nighttime elective hepatectomy for HCC patients.

17.
Biochem Genet ; 2024 Jan 11.
Article de Anglais | MEDLINE | ID: mdl-38206423

RÉSUMÉ

The toll-like receptor (TLR) family is an important class of proteins involved in the immune response. However, little is known about the association between TLRs and Esophageal squamous cell cancer (ESCC). We explored differentially expressed genes (DEGs) between ESCC and esophagus tissues in TCGA and GTEx database. By taking the intersection with TLR gene set and using univariate Cox analysis and multivariate Cox regression analysis to discriminate the hub genes, we created a TLR-prognostic model. Our model separated patients with ESCC into high- and low-risk score (RS) groups. Prognostic analysis was performed with Kaplan-Meier curves. The two groups were also compared regarding tumor immune microenvironment and drug sensitivity. Six hub genes (including CD36, LGR4, MAP2K3, NINJ1, PIK3R1, and TRAF3) were screened to construct a TLR-prognostic model. High-RS group had a worse survival (p < 0.01), lower immune checkpoint expression (p < 0.05), immune cell abundance (p < 0.05) and decreased sensitivity to Epirubicin (p < 0.001), 5-fluorouracil (p < 0.0001), Sorafenib (p < 0.01) and Oxaliplatin (p < 0.05). We constructed a TLR-based model, which could be used to assess the prognosis of patients with ESCC, provide new insights into drug treatment for ESCC patients and investigate the TME and drug response.

18.
Nat Neurosci ; 27(3): 462-470, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38182836

RÉSUMÉ

Dietary fasting markedly influences the distribution and function of immune cells and exerts potent immunosuppressive effects. However, the mechanisms through which fasting regulates immunity remain obscure. Here we report that catecholaminergic (CA) neurons in the ventrolateral medulla (VLM) are activated during fasting in mice, and we demonstrate that the activity of these CA neurons impacts the distribution of T cells and the development of autoimmune disease in an experimental autoimmune encephalomyelitis (EAE) model. Ablation of VLM CA neurons largely reversed fasting-mediated T cell redistribution. Activation of these neurons drove T cell homing to bone marrow in a CXCR4/CXCL12 axis-dependent manner, which may be mediated by a neural circuit that stimulates corticosterone secretion. Similar to fasting, the continuous activation of VLM CA neurons suppressed T cell activation, proliferation, differentiation and cytokine production in autoimmune mouse models and substantially alleviated disease symptoms. Collectively, our study demonstrates neuronal control of inflammation and T cell distribution, suggesting a neural mechanism underlying fasting-mediated immune regulation.


Sujet(s)
Encéphalomyélite auto-immune expérimentale , Lymphocytes T , Souris , Animaux , Neurones/physiologie , Transduction du signal , Jeûne , Souris de lignée C57BL
19.
Drug Resist Updat ; 73: 101057, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38266355

RÉSUMÉ

AIMS: Lung cancer is the leading cause of cancer mortality and lung adenocarcinoma (LUAD) accounts for more than half of all lung cancer cases. Tumor elimination is mostly hindered by drug resistance and the mechanisms remain to be explored in LUAD. METHODS: CRISPR screens in cell and murine models and single-cell RNA sequencing were conducted, which identified MAF bZIP transcription factor F (MAFF) as a critical factor regulating tumor growth and treatment resistance in LUAD. RNA and ChIP sequencing analyses were performed for transcriptional target expression and specific binding sites of MAFF. Functions of MAFF in inhibiting tumor growth and promoting cisplatin or irradiation efficacy were investigated using cellular and xenograft models. RESULTS: Patients with lung adenocarcinoma and reduced MAFF expression had worse clinical outcomes. MAFF inhibited tumor cell proliferation by regulating the expression of SLC7A11, CDK6, and CDKN2C, promoting ferroptosis and preventing cell cycle progression from G1 to S. MAFF also conferred tumor cells vulnerable to cisplatin-based or ionizing radiation treatments. MAFF reduction was a final event in the acquisition of cisplatin resistance of LUAD cells. The intracellular cAMP/PKA/CREB1 pathway upregulated MAFF in response to cisplatin-based or ionizing radiation treatments. CONCLUSIONS: MAFF suppresses tumor growth, and pharmacological agonists targeting MAFF may improve cisplatin or irradiation therapies for lung adenocarcinoma patients.


Sujet(s)
Adénocarcinome pulmonaire , Ferroptose , Tumeurs du poumon , Humains , Animaux , Souris , Cisplatine/pharmacologie , Cisplatine/usage thérapeutique , Ferroptose/génétique , Lignée cellulaire tumorale , Adénocarcinome pulmonaire/traitement médicamenteux , Adénocarcinome pulmonaire/génétique , Adénocarcinome pulmonaire/radiothérapie , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/génétique , Tumeurs du poumon/radiothérapie , Prolifération cellulaire , Cycle cellulaire , Protéines nucléaires/métabolisme , Protéines nucléaires/usage thérapeutique , Facteur de transcription MafF
20.
Talanta ; 269: 125444, 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38042143

RÉSUMÉ

Signal transduction mediated by epidermal growth factor receptor (EGFR) gene affects the proliferation, invasion, metastasis, and angiogenesis of tumor cells. In particular, non-small cell lung cancer (NSCLC) patients with increased in copy number of EGFR gene are often sensitive to tyrosine kinase inhibitors. Despite being the standard for detecting EGFR amplification in the clinic, fluorescence in situ hybridization (FISH) traditionally involves repetitive and complex benchtop procedures that are not only time consuming but also require well-trained personnel. To address these limitations, we develop a digital microfluidics-based FISH platform (DMF-FISH) that automatically implements FISH operations. This system mainly consists of a DMF chip for reagent operation, a heating array for temperature control and a signal processing system. With the capability of automatic droplet handling and efficient temperature control, DMF-FISH performs cell digestion, gradient elution, hybridization and DAPI staining without manual intervention. In addition to operational feasibility, DMF-FISH yields comparable performance with the benchtop FISH protocol but reducing the consumption of DNA probe by 87 % when tested with cell lines and clinical samples. These results highlight unique advantages of the fully automated DMF-FISH system and thus suggest its great potential for clinical diagnosis and personalized therapy of NSCLC.


Sujet(s)
Carcinome pulmonaire non à petites cellules , Tumeurs du poumon , Humains , Carcinome pulmonaire non à petites cellules/anatomopathologie , Tumeurs du poumon/anatomopathologie , Amplification de gène , Récepteurs ErbB/génétique , Récepteurs ErbB/métabolisme , Hybridation fluorescente in situ/méthodes , Microfluidique , Dosage génique , Mutation
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE