Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-39000546

RÉSUMÉ

Plants are often exposed to biotic or abiotic stress, which can seriously impede their growth and development. In recent years, researchers have focused especially on the study of plant responses to biotic and abiotic stress. As one of the most widely planted grapevine rootstocks, 'Beta' has been extensively proven to be highly resistant to stress. However, further research is needed to understand the mechanisms of abiotic stress in 'Beta' rootstocks. In this study, we isolated and cloned a novel WRKY transcription factor, VhWRKY44, from the 'Beta' rootstock. Subcellular localization analysis revealed that VhWRKY44 was a nuclear-localized protein. Tissue-specific expression analysis indicated that VhWRKY44 had higher expression levels in grape roots and mature leaves. Further research demonstrated that the expression level of VhWRKY44 in grape roots and mature leaves was highly induced by salt and cold treatment. Compared with the control, Arabidopsis plants overexpressing VhWRKY44 showed stronger resistance to salt and cold stress. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased, and the contents of proline, malondialdehyde (MDA) and chlorophyll were changed considerably. In addition, significantly higher levels of stress-related genes were detected in the transgenic lines. The results indicated that VhWRKY44 was an important transcription factor in 'Beta' with excellent salt and cold tolerance, providing a new foundation for abiotic stress research.


Sujet(s)
Arabidopsis , Régulation de l'expression des gènes végétaux , Protéines végétales , Végétaux génétiquement modifiés , Facteurs de transcription , Vitis , Arabidopsis/génétique , Arabidopsis/métabolisme , Vitis/génétique , Vitis/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Végétaux génétiquement modifiés/génétique , Stress physiologique/génétique , Basse température , Racines de plante/génétique , Racines de plante/métabolisme , Tolérance au sel/génétique , Feuilles de plante/métabolisme , Feuilles de plante/génétique
2.
BMC Plant Biol ; 23(1): 632, 2023 Dec 09.
Article de Anglais | MEDLINE | ID: mdl-38066449

RÉSUMÉ

BACKGROUND: Anthocyanin synthase (ANS) is the enzyme downstream of the anthocyanins synthesis pathway and the rate-limiting enzyme of the synthesis pathway. It catalyzes the conversion of colorless anthocyanins to anthocyanins and plays an important role in plant color presentation and stress resistance. However, ANS gene is rarely studied in grapes. RESULTS: In this study, 121 VvANS genes were identified and distributed on 18 chromosomes, VvANS family members were divided into 8 subgroups. Secondary structure prediction showed mainly irregular coils and α-helices, and subcellular localization indicated that VvANS gene family is mainly located in chloroplast, cytoplasm and nucleus. The promoter region of the VvANS gene family contains multiple cis-acting elements that are associated with light, abiotic stress, and hormones. Intraspecific collinearity analysis showed that there were 13 pairs of collinearity between VvANS genes. Interspecific collinearity analysis showed that there was more collinearity between grape, apple and Arabidopsis, but less collinearity between grape and rice. Microarray data analysis showed that VvANS17, VvANS23 and VvANS75 had higher expression levels in flesh and peel, while VvANS25, VvANS64 and VvANS106 had higher expression levels in flower. The results of qRT-PCR analysis showed that VvANS genes were expressed throughout the whole process of fruit coloring, such as VvANS47 and VvANS55 in the green fruit stage, VvANS3, VvANS64 and VvANS90 in the initial fruit color turning stage. The expression levels of VvANS21, VvANS79 and VvANS108 were higher at 50% coloring stage, indicating that these genes play an important role in the fruit coloring process. VvANS4, VvANS66 and VvANS113 had the highest expression levels in the full maturity stage. CONCLUSIONS: These results indicated that different members of VvANS gene family played a role in different coloring stages, and this study laid a foundation for further research on the function of ANS gene family.


Sujet(s)
Vitis , Vitis/génétique , Vitis/métabolisme , Fruit/métabolisme , Anthocyanes/métabolisme , Régulation de l'expression des gènes végétaux , Protéines végétales/métabolisme , Phylogenèse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE