RÉSUMÉ
BACKGROUND: Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disease. Recent studies have reported the close association between cognitive function in AD and purinergic receptors in the central nervous system. In the current study, we investigated the effect of CD73 inhibitor α, ß-methylene ADP (APCP) on cognitive impairment of AD in mice, and to explore the potential underlying mechanisms. RESULTS: We found that acute administration of Aß142 (i.c.v.) resulted in a significant increase in adenosine release by using microdialysis study. Chronic administration of APCP (10, 30 mg/kg) for 20 d obviously mitigated the spatial working memory impairment of Aß142-treated mice in both Morris water maze (MWM) test and Y-maze test. In addition, the extracellular adenosine production in the hippocampus was inhibited by APCP in Aß-treated mice. Further analyses indicated expression of acetyltransferase (ChAT) in hippocampus of mice of was significantly reduced, while acetylcholinesterase (AChE) expression increased, which compared to model group. We observed that APCP did not significantly alter the NLRP3 inflammasome activity in hippocampus, indicating that anti-central inflammation seems not to be involved in APCP effect. CONCLUSIONS: In conclusion, we report for the first time that inhibition of CD73 by APCP was able to protect against memory loss induced by Aß142 in mice, which may be due to the decrease of CD73-driven adenosine production in hippocampus. Enhancement of central cholinergic function of the central nervous system may also be involved in the effects of APCP.
Sujet(s)
Animaux , Mâle , Souris , ADP/analogues et dérivés , Maladies neurodégénératives/prévention et contrôle , Hippocampe , Nucleotidases/antagonistes et inhibiteurs , Acetylcholinesterase , ADP/administration et posologie , Maladie d'Alzheimer/prévention et contrôle , Test du labyrinthe aquatique de Morris , Souris de lignée C57BLRÉSUMÉ
Abstract The authors report a rare case of primary cutaneous mucormycosis caused by Mucor irregularis and cutaneous Klebsiella pneumoniae infections in a 67-year-old Chinese woman. After the administration of liposomal amphotericin B combined with cefoperazone/sulbactam sodium, the patient recovered. Invasive fungal infection combined with cutaneous bacterial infection should receive attention.
Sujet(s)
Humains , Femelle , Sujet âgé , Co-infection/traitement médicamenteux , Mucormycose/complications , Mucormycose/traitement médicamenteux , Peau , Klebsiella pneumoniae , Mucor , Antifongiques/usage thérapeutiqueRÉSUMÉ
BACKGROUND: Despite their regional economic importance and being increasingly reared globally, the origins and evolution of the llama and alpaca remain poorly understood. Here we report reference genomes for the llama, and for the guanaco and vicuña (their putative wild progenitors), compare these with the published alpaca genome, and resequence seven individuals of all four species to better understand domestication and introgression between the llama and alpaca. RESULTS: Phylogenomic analysis confirms that the llama was domesticated from the guanaco and the alpaca from the vicuña. Introgression was much higher in the alpaca genome (36%) than the llama (5%) and could be dated close to the time of the Spanish conquest, approximately 500 years ago. Introgression patterns are at their most variable on the X-chromosome of the alpaca, featuring 53 genes known to have deleterious X-linked phenotypes in humans. Strong genome-wide introgression signatures include olfactory receptor complexes into both species, hypertension resistance into alpaca, and fleece/fiber traits into llama. Genomic signatures of domestication in the llama include male reproductive traits, while in alpaca feature fleece characteristics, olfaction-related and hypoxia adaptation traits. Expression analysis of the introgressed region that is syntenic to human HSA4q21, a gene cluster previously associated with hypertension in humans under hypoxic conditions, shows a previously undocumented role for PRDM8 downregulation as a potential transcriptional regulation mechanism, analogous to that previously reported at high altitude for hypoxia-inducible factor 1α. CONCLUSIONS: The unprecedented introgression signatures within both domestic camelid genomes may reflect post-conquest changes in agriculture and the breakdown of traditional management practices.
Sujet(s)
Évolution biologique , Camélidés du Nouveau Monde/génétique , Domestication , Introgression génétique , Génome , Adaptation biologique , Animaux , Femelle , Mâle , Phylogéographie , Sélection génétique , Amérique du SudRÉSUMÉ
The authors report a rare case of primary cutaneous mucormycosis caused by Mucor irregularis and cutaneous Klebsiella pneumoniae infections in a 67-year-old Chinese woman. After the administration of liposomal amphotericin B combined with cefoperazone/sulbactam sodium, the patient recovered. Invasive fungal infection combined with cutaneous bacterial infection should receive attention.
Sujet(s)
Co-infection , Mucormycose , Sujet âgé , Antifongiques/usage thérapeutique , Co-infection/traitement médicamenteux , Femelle , Humains , Klebsiella pneumoniae , Mucor , Mucormycose/complications , Mucormycose/traitement médicamenteux , PeauRÉSUMÉ
BACKGROUND: The COVID-19 outbreak containment strategies in China based on non-pharmaceutical interventions (NPIs) appear to be effective. Quantitative research is still needed however to assess the efficacy of different candidate NPIs and their timings to guide ongoing and future responses to epidemics of this emerging disease across the World. METHODS: We built a travel network-based susceptible-exposed-infectious-removed (SEIR) model to simulate the outbreak across cities in mainland China. We used epidemiological parameters estimated for the early stage of outbreak in Wuhan to parameterise the transmission before NPIs were implemented. To quantify the relative effect of various NPIs, daily changes of delay from illness onset to the first reported case in each county were used as a proxy for the improvement of case identification and isolation across the outbreak. Historical and near-real time human movement data, obtained from Baidu location-based service, were used to derive the intensity of travel restrictions and contact reductions across China. The model and outputs were validated using daily reported case numbers, with a series of sensitivity analyses conducted. RESULTS: We estimated that there were a total of 114,325 COVID-19 cases (interquartile range [IQR] 76,776 - 164,576) in mainland China as of February 29, 2020, and these were highly correlated (p<0.001, R2=0.86) with reported incidence. Without NPIs, the number of COVID-19 cases would likely have shown a 67-fold increase (IQR: 44 - 94), with the effectiveness of different interventions varying. The early detection and isolation of cases was estimated to prevent more infections than travel restrictions and contact reductions, but integrated NPIs would achieve the strongest and most rapid effect. If NPIs could have been conducted one week, two weeks, or three weeks earlier in China, cases could have been reduced by 66%, 86%, and 95%, respectively, together with significantly reducing the number of affected areas. However, if NPIs were conducted one week, two weeks, or three weeks later, the number of cases could have shown a 3-fold, 7-fold, and 18-fold increase across China, respectively. Results also suggest that the social distancing intervention should be continued for the next few months in China to prevent case numbers increasing again after travel restrictions were lifted on February 17, 2020. CONCLUSION: The NPIs deployed in China appear to be effectively containing the COVID-19 outbreak, but the efficacy of the different interventions varied, with the early case detection and contact reduction being the most effective. Moreover, deploying the NPIs early is also important to prevent further spread. Early and integrated NPI strategies should be prepared, adopted and adjusted to minimize health, social and economic impacts in affected regions around the World.
RÉSUMÉ
BACKGROUND: Arsenic trioxide (As2O3), a drug that has been used in China for approximately two thousand years, induces cell death in a variety of cancer cell types, including neuroblastoma (NB). The tyrosine kinase receptor (Trk) family comprises three members, namely TrkA, TrkB and TrkC. Various studies have confirmed that TrkA and TrkC expression is associated with a good prognosis in NB, while TrkB overexpression can lead to tumor cell growth and invasive metastasis. Previous studies have shown that As2O3 can inhibit the growth and proliferation of a human NB cell line and can also affect the N-Myc mRNA expression. It remains unclear whether As2O3 regulates Trks for the purposes of treating NB. METHODS: The aim of the present study was to investigate the effect of As2O3 on Trk expression in NB cell lines and its potential therapeutic efficacy. SK-N-SH cells were grown with increasing doses of As2O3 at different time points. We cultured SK-N-SH cells, which were treated with increasing doses of As2O3 at different time points. Trk expression in the NB samples was quantified by immunohistochemistry, and the cell cycle was analyzed by flow cytometry. TrkA, TrkB and TrkC mRNA expression was evaluated by real-time PCR analysis. RESULTS: Immunohistochemical and real-time PCR analyses indicated that TrkA and TrkC were over-expressed in NB, and specifically during stages 1, 2 and 4S of the disease progression. TrkB expression was increased in stage 3 and 4 NB. As2O3 significantly arrested SK-N-SH cells in the G2/M phase. In addition, TrkA, TrkB and TrkC expression levels were significantly upregulated by higher concentrations of As2O3 treatment, notably in the 48-h treatment period. Our findings suggested that to achieve the maximum effect and appropriate regulation of Trk expression in NB stages 1, 2 and 4S, As2O3 treatment should be at relatively higher concentrations for longer delivery times;however, for NB stages 3 and 4, an appropriate concentration and infusion time for As2O3 must be carefully determined. CONCLUSION: The present findings suggested that As2O3 induced Trk expression in SK-N-SH cells to varying degrees and may be a promising adjuvant to current treatments for NB due to its apoptotic effects.
Sujet(s)
Composés de l'arsenic/pharmacologie , Points de contrôle du cycle cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Glycoprotéines membranaires/effets des médicaments et des substances chimiques , Neuroblastome/métabolisme , Oxydes/pharmacologie , Récepteur trkB/effets des médicaments et des substances chimiques , Trioxyde d'arsenic , Lignée cellulaire tumorale/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale/métabolisme , Humains , Glycoprotéines membranaires/métabolisme , Neuroblastome/anatomopathologie , Récepteur trkB/métabolismeRÉSUMÉ
BACKGROUND: Arsenic trioxide (As2O3), a drug that has been used in China for approximately two thousand years, induces cell death in a variety of cancer cell types, including neuroblastoma (NB). The tyrosine kinase receptor (Trk) family comprises three members, namely TrkA, TrkB and TrkC. Various studies have confirmed that TrkA and TrkC expression is associated with a good prognosis in NB, while TrkB overexpression can lead to tumor cell growth and invasive metastasis. Previous studies have shown that As2O3 can inhibit the growth and proliferation of a human NB cell line and can also affect the N-Myc mRNA expression. It remains unclear whether As2O3 regulates Trks for the purposes of treating NB. METHODS: The aim of the present study was to investigate the effect of As2O3 on Trk expression in NB cell lines and its potential therapeutic efficacy. SK-N-SH cells were grown with increasing doses of As2O3 at different time points. We cultured SK-N-SH cells, which were treated with increasing doses of As2O3 at different time points. Trk expression in the NB samples was quantified by immunohistochemistry, and the cell cycle was analyzed by flow cytometry. TrkA, TrkB and TrkC mRNA expression was evaluated by real-time PCR analysis. RESULTS: Immunohistochemical and real-time PCR analyses indicated that TrkA and TrkC were over-expressed in NB, and specifically during stages 1, 2 and 4S of the disease progression. TrkB expression was increased in stage 3 and 4 NB. As2O3significantly arrested SK-N-SH cells in the G2/M phase. In addition, TrkA, TrkB and TrkC expression levels were significantly upregulated by higher concentrations of As2O3 treatment, notably in the 48-h treatment period. Our findings suggested that to achieve the maximum effect and appropriate regulation of Trk expression in NB stages 1, 2 and 4S, As2O3 treatment should be at relatively higher concentrations for longer delivery times;however, for NB stages 3 and 4, an appropriate concentration and infusion time for As2O3 must be carefully determined. CONCLUSION: The present findings suggested that As2O3 induced Trk expression in SK-N-SH cells to varying degrees and may be a promising adjuvant to current treatments for NB due to its apoptotic effects.
Sujet(s)
Humains , Oxydes/pharmacologie , Composés de l'arsenic/pharmacologie , Glycoprotéines membranaires/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Récepteur trkB/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Points de contrôle du cycle cellulaire/effets des médicaments et des substances chimiques , Neuroblastome/métabolisme , Glycoprotéines membranaires/métabolisme , Récepteur trkB/métabolisme , Lignée cellulaire tumorale/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale/métabolisme , Trioxyde d'arsenic , Neuroblastome/anatomopathologieRÉSUMÉ
Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.
Sujet(s)
Ambystoma mexicanum/génétique , Mutation , Myocarde/métabolisme , Régions promotrices (génétique) , Tropomyosine/génétique , Ambystoma mexicanum/métabolisme , Animaux , Séquence nucléotidique , Cellules CHO , Cricetinae , Cricetulus , Régulation de l'expression des gènes , Gènes rapporteurs , Génotype , Souris , Données de séquences moléculaires , Phénotype , Rats , Site d'initiation de la transcription , Transfection , Tropomyosine/métabolismeRÉSUMÉ
The Mexican axolotl, Ambystoma mexicanum, has been a useful animal model to study heart development and cardiac myofibrillogenesis. A naturally-occurring recessive mutant, gene "c", for cardiac non-function in the Mexican axolotl causes a failure of myofibrillogenesis due to a lack of tropomyosin expression in homozygous mutant (c/c) embryonic hearts. Myofibril-inducing RNA (MIR) rescues mutant hearts in vitro by promoting tropomyosin expression and myofibril formation thereafter. We have studied the effect of MIR on the expression of various isoforms of cardiac troponin T (cTnT), a component of the thin filament that binds with tropomyosin. Four alternatively spliced cTnT isoforms have been characterized from developing axolotl heart. The expression of various cTnT isoforms in normal, mutant, and mutant hearts corrected with MIR, is evaluated by real-time RT-PCR using isoform specific primer pairs; MIR affects the total transcription as well as the splicing of the cTnT in axolotl heart.
Sujet(s)
Ambystoma mexicanum/embryologie , Coeur/embryologie , Myocarde/métabolisme , Myofibrilles/physiologie , ARN/métabolisme , Troponine T/génétique , Troponine T/métabolisme , Ambystoma mexicanum/génétique , Animaux , Animal génétiquement modifié , Régulation de l'expression des gènes au cours du développement/physiologie , Coeur/physiologie , ARN/génétique , Relation structure-activitéRÉSUMÉ
Ambystoma mexicanum is an intriguing animal model for studying heart development because it carries a mutation in gene c. Hearts of homozygous recessive (c/c) mutant embryos do not contain organized myofibrils and fail to beat. The defect can be corrected by organ-culturing the mutant heart in the presence of RNA from anterior endoderm or endoderm/mesoderm-conditioned medium. By screening a cDNA library made of total conditioned medium RNA from normal axolotl embryonic endoderm, we isolated a single clone (MIR), the synthetic RNA from which corrects the mutant heart defect by promoting myofibrillogenesis and thus was named MIR (myofibrillogenesis inducing RNA). In the present study, we have examined MIR gene expression in mutant axolotl hearts at early pre-heart-beat developmental stages and found its quantitative expression, as detected by RT-PCR, to be the same as in normal hearts. However, careful analysis of sequence data revealed a G-->U point mutation in the mutant MIR RNA. Further computational analyses, using GENEBEE software to compare normal and mutant MIR RNAs show a significant alteration in RNA secondary structure of the point-mutated MIR RNA. The results from bioassay and confocal microscopy immunofluorescent studies demonstrate that, unlike MIR RNA derived from normal embryos, the mutated MIR RNA does not promote myofibrillogenesis in mutant embryonic hearts and fails to rescue/correct the mutant heart defect.