Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 5.604
Filtrer
2.
Aging Cell ; : e14266, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958042

RÉSUMÉ

Age-related chronic inflammatory lung diseases impose a threat on public health, including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, their etiology and potential targets have not been clarified. We performed genome-wide meta-analysis for IPF with the largest sample size (2883 cases and 741,929 controls) and leveraged the summary statistics of COPD (17,547 cases and 617,598 controls). Transcriptome-wide and proteome-wide Mendelian randomization (MR) designs, together with genetic colocalization, were implemented to find robust targets. The mediation effect was assessed using leukocyte telomere length (LTL). The single-cell transcriptome analysis was performed to link targets with cell types. Individual-level data from UK Biobank (UKB) were used to validate our findings. Sixteen genetically predicted plasma proteins were causally associated with the risk of IPF and 6 proteins were causally associated with COPD. Therein, genetically-elevated plasma level of SCARF2 protein should reduce the risk of both IPF (odds ratio, OR = 0.9974 [0.9970, 0.9978]) and COPD (OR = 0.7431 [0.6253, 0.8831]) and such effects were not mediated by LTL. Genetic colocalization further corroborated these MR results of SCARF2. The transcriptome-wide MR confirmed that higher expression level of SCARF2 was associated with a reduced risk of both. However, the single-cell RNA analysis indicated that SCARF2 expression level was only relatively lower in epithelial cells of COPD lung tissue compared to normal lung tissue. UKB data implicated an inverse association of serum SCARF2 protein with COPD (hazard ratio, HR = 1.215 [1.106, 1.335]). The SCARF2 gene should be a novel target for COP.

3.
Immunol Lett ; : 106890, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38959983

RÉSUMÉ

BACKGROUND: Autoimmune thyroiditis (AITD) is an organ-specific autoimmune disease. Substantial evidence suggests that Vitamin D (VitD) deficiency is closely associated with an increased risk of AITD. However, the effects of VitD3 on immune cells, especially Th17/Treg cell subsets, and the underlying molecular mechanism in AITD have not yet been investigated. METHODS: An experimental autoimmune thyroiditis (EAT) mouse model was established with a high-iodine diet. After 8 weeks, thyroid injury was assessed using hematoxylin and eosin (H&E) staining. ELISA was employed to measure serum levels of thyroxine (T3 and T4), thyroid autoimmune antibodies (Tg-Ab and TPO-Ab), and inflammatory cytokines. Flow cytometry and multiplex fluorescence immunohistochemical (mIHC) assays were used to analyze Th17/Treg cell subsets. The CCK-8 and flow cytometry assays were used to determine cell viability and apoptosis. RESULTS: Administration of VitD3 reduced thyroid follicle destruction, decreased lymphocyte infiltration, and lowered T3, T4, Tg-Ab, and TPO-Ab serum levels in EAT mice. VitD3 treatment also reduced the frequency of Th17 cells while promoting the Treg cell subset both in the thyroid tissue and in the splenocytes cultured in vitro. Furthermore, VitD3 administration suppressed the production of inflammatory cytokines in EAT mice. VitD3 was also found to regulate Treg cells' differentiation, viability, and apoptosis. Mechanistically, we discovered that VitD3 treatment upregulated YAP expression and activated the JAK/STAT pathway. Rescue assays confirmed that depletion of YAP counteracted the effects of VitD3 on Treg cell differentiation and function. CONCLUSION: Vitamin D3 attenuates AITD by modulating Th17/Treg cell balance via regulating the YAP/JAK1/STAT1 axis.

4.
Front Endocrinol (Lausanne) ; 15: 1379398, 2024.
Article de Anglais | MEDLINE | ID: mdl-38957444

RÉSUMÉ

Background: Diabetic gastroparesis is a common complication in patient with diabetes. Dietary intervention has been widely used in the treatment of diabetic gastroparesis. The aim of this study is to evaluate the role of diet in the treatment of diabetic gastroparesis. Methods: This systematic review was conducted a comprehensive search of randomized controlled trials using dietary interventions for the treatment of diabetic gastroparesis up to 9 November 2023. The primary outcomes were gastric emptying time and clinical effect, while fasting blood glucose, 2-hour postprandial blood glucose and glycosylated hemoglobin were secondary outcomes. Data analysis was performed using RevMan 5.4 software, and publication bias test was performed using Stata 15.1 software. Results: A total of 15 randomized controlled trials involving 1106 participants were included in this review. The results showed that patients with diabetic gastroparesis benefit from dietary interventions (whether personalized dietary care alone or personalized dietary care+routine dietary care). Compared with routine dietary care, personalized dietary care and personalized dietary care+routine dietary care can shorten the gastric emptying time, improve clinical efficacy, and reduce the level of fasting blood glucose, 2-hour postprandial blood glucose and glycosylated hemoglobin. Conclusions: Limited evidence suggests that dietary intervention can promote gastric emptying and stabilize blood glucose control in patients with diabetic gastroparesis. Dietary intervention has unique potential in the treatment of diabetic gastroparesis, and more high-quality randomized controlled trials are needed to further validate our research results. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023481621.


Sujet(s)
Gastroparésie , Humains , Gastroparésie/diétothérapie , Gastroparésie/thérapie , Gastroparésie/étiologie , Vidange gastrique , Glycémie/métabolisme , Complications du diabète/diétothérapie , Essais contrôlés randomisés comme sujet , Résultat thérapeutique , Diabète/diétothérapie
5.
Sci Total Environ ; 947: 174627, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38986712

RÉSUMÉ

Brown carbon (BrC), the light-absorbing component of organic aerosols, plays a significant role in climate change and atmospheric photochemistry. However, the water-insoluble fractions of BrC have not been extensively studied, limiting the assessment of the overall climate effects of BrC. In this study, water-soluble and -insoluble organic carbon (i.e., WSOC and WIOC) in wintertime aerosols in Hefei were subsequently fractionated, and their fluorescence properties were comparatively investigated with the excitation-emission matrix method. WIOC contributing 57.1 % was the major component of organic carbon. WSOC with the largest contribution from humic-like regions exhibited a redshift compared to WIOC. Three humic-like substances (HULIS) with different oxidation degrees and one protein-like substances (PRLIS) were identified as the major fluorescent components by the parallel factor analysis. WSOC had more highly oxygenated HULIS, whereas low-oxygenated HULIS dominated WIOC. Nighttime WIOC contained more less-oxygenated species. The positive matrix factorization analysis suggested that biomass burning (43 %) was the largest source of both fluorescent WSOC and WIOC. Coal combustion contributed much more to fluorescent WIOC (40 %), whereas secondary formation contributed more to fluorescent WSOC (12 %). During aerosol pollution episodes, the increase in fluorescence efficiency was much greater for WIOC (25 %) than for WSOC (12 %), and WSOC and WIOC experienced a redshift and blueshift in emission wavelength, respectively. WSOC had more highly oxygenated HULIS, while WIOC had more less-oxygenated HULIS in aerosol episodes than the non-episodic periods. In addition, aerosol pollution was accompanied by the increased contributions of biomass burning and coal combustion to both fluorescent WSOC and WIOC, while the decreased relative contribution of secondary formation to fluorescent WSOC. Our findings highlighted the different fluorescence properties, compositions and sources of fluorescent WSOC and WIOC, providing a comprehensive view of BrC aerosols.

6.
Front Cell Infect Microbiol ; 14: 1408388, 2024.
Article de Anglais | MEDLINE | ID: mdl-38988810

RÉSUMÉ

Background: Surgical site infection (SSI) is a common complication in HIV-positive fracture patients undergoing surgery, leading to increased morbidity, mortality, and healthcare costs. Accurate prediction of SSI risk can help guide clinical decision-making and improve patient outcomes. However, there is a lack of user-friendly, Web-based calculator for predicting SSI risk in this patient population. Objective: This study aimed to develop and validate a novel web-based risk calculator for predicting SSI in HIV-positive fracture patients undergoing surgery in China. Method: A multicenter retrospective cohort study was conducted using data from HIV-positive fracture patients who underwent surgery in three tertiary hospitals in China between May 2011 and September 2023. We used patients from Beijing Ditan Hospital as the training cohort and patients from Chengdu Public Health and Changsha First Hospital as the external validation cohort. Univariate, multivariate logistic regression analyses and SVM-RFE were performed to identify independent risk factors for SSIs. A web-based calculator was developed using the identified risk factors and validated using an external validation cohort. The performance of the nomogram was evaluated using the area under the receiver operating characteristic (AUC) curves, calibration plots, and decision curve analysis (DCA). Results: A total of 338 HIV-positive patients were included in the study, with 216 patients in the training cohort and 122 patients in the validation cohort. The overall SSI incidence was 10.7%. The web-based risk calculator (https://sydtliubo.shinyapps.io/DynNom_for_SSI/) incorporated six risk factors: HBV/HCV co-infection, HIV RNA load, CD4+ T-cell count, Neu and Lym level. The nomogram demonstrated good discrimination, with an AUC of 0.890 in the training cohort and 0.853 in the validation cohort. The calibration plot showed good agreement between predicted and observed SSI probabilities. The DCA indicated that the nomogram had clinical utility across a wide range of threshold probabilities. Conclusion: Our study developed and validated a novel web-based risk calculator for predicting SSI risk in HIV-positive fracture patients undergoing surgery in China. The nomogram demonstrated good discrimination, calibration, and clinical utility, and can serve as a valuable tool for risk stratification and clinical decision-making in this patient population. Future studies should focus on integrating this nomogram into hospital information systems for real-time risk assessment and management.


Sujet(s)
Infections à VIH , Internet , Infection de plaie opératoire , Humains , Mâle , Chine/épidémiologie , Femelle , Adulte d'âge moyen , Infections à VIH/complications , Études rétrospectives , Facteurs de risque , Infection de plaie opératoire/épidémiologie , Adulte , Appréciation des risques/méthodes , Courbe ROC , Nomogrammes
7.
Nano Lett ; 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38991210

RÉSUMÉ

Cellulose is difficult to melt or dissolve. The dissolution and regeneration process paves the way to convert cellulose into diverse forms but still suffers from high costs and environmental pollution. Here, we developed a method that uses aqueous alkali to efficiently dissolve cellulose at a temperature above 0 °C in minutes for fabricating regenerated cellulose. Cellulose was modified with minimal carboxymethyl groups to weaken the intermolecular interaction and improve its dissolution. The modified cellulose can be commercially obtained from carboxymethyl cellulose manufacturing with low cost and high quality. The use of only aqueous alkali reduces pollution and facilitates chemical recycling, and the moderate dissolving temperature reduces energy consumption. The regenerated cellulose materials display excellent mechanical properties and can be recycled or biodegraded after use. The method allows the use of diverse raw materials and modifications to broaden its applicability. The study develops a low-cost and eco-friendly method to fabricate regenerated cellulose.

8.
Phys Rev Lett ; 132(26): 260802, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38996307

RÉSUMÉ

Twin-field quantum key distribution (TFQKD) overcomes the linear rate-loss limit, which promises a boost of secure key rate over long distance. However, the complexity of eliminating the frequency differences between the independent laser sources hinders its practical application. We analyzed and determined the frequency stability requirements for implementing TFQKD using frequency-stabilized lasers. Based on this analysis, we proposed and demonstrated a simple and practical approach that utilizes the saturated absorption spectroscopy of acetylene as an absolute reference, eliminating the need for fast frequency locking to achieve TFQKD. Adopting the 4-intensity sending-or-not-sending TFQKD protocol, we experimentally demonstrated the TFQKD over 502, 301, and 201 km ultralow-loss optical fiber, respectively. We expect this high-performance scheme will find widespread usage in future intercity and free-space quantum communication networks.

9.
ACS Nano ; 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38997111

RÉSUMÉ

With electronic devices evolving toward portable and high-performance wearables, the constraints of complex and wet processing technologies become apparent. This study presents a scalable photolithography/chemical-free method for crafting wearable all-carbon nanotube (CNT) photodetector device arrays. Laser-assisted patterning and dry deposition techniques directly assemble gas-phase CNTs into flexible devices without any lithography or lift-off processes. The resulting wafer-scale all-CNT photodetector arrays showcase excellent uniformity, wearability, environmental stability, and notable broadband photoresponse, boasting a high responsivity of 44 AW-1 and a simultaneous detectivity of 1.9 × 109 Jones. This research provides an efficient, versatile, and scalable strategy for manufacturing wearable all-CNT device arrays, allowing widespread adoption in wearable optoelectronics and multifunctional sensors.

10.
Phys Rev Lett ; 132(24): 246401, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38949361

RÉSUMÉ

Twisted bilayer graphene (TBG) can host the moiré energy flat bands with twofold degeneracy serving as a fruitful playground for strong correlations and topological phases. However, the number of degeneracy is not limited to two. Introducing a spatially alternative magnetic field, we report that the induced magnetic phase becomes an additional controllable parameter and leads to an undiscovered generation of fourfold degenerate flat bands. This emergence stems from the band inversion at the Γ point near the Fermi level with a variation of both twisted angle and magnetic phase. We present the conditions for the emergence of multifold degenerate flat bands, which are associated with the eigenvalue degeneracy of a Birman-Schwinger operator. Using holomorphic functions, which explain the origin of the double flat bands in the conventional TBG, we can generate analytical wave functions in the magnetic TBG to show absolute flatness with fourfold degeneracy. Moreover, we identify an orbital-related intervalley coherent state as the many-body ground state at charge neutrality. In contrast, the conventional TBG has only two moiré energy flat bands, and the highly degenerate flat bands with additional orbital channels in this magnetic platform might bring richer correlation physics.

11.
J Cancer ; 15(13): 4313-4327, 2024.
Article de Anglais | MEDLINE | ID: mdl-38947397

RÉSUMÉ

Aquaporin 5 (AQP5) has been shown to have a pro-carcinogenic effect in numerous types of malignancies. This research intends to investigate the role and the molecular mechanism of AQP5 on enriched gastric cancer stem cells (GCSCs). Methods: Immunohistochemistry, western blot (WB), and RT-qPCR techniques were employed to identify the presence of AQP5 in gastric cancer (GC) and the neighboring paracancerous tissues. Additionally, a statistical analysis was conducted to determine the correlation between AQP5 expression and the pathological and histological parameters. Furthermore, the study aimed to assess the predictive value of AQP5 expression in long-term survival after GC surgery. GCSCs were enriched using the serum-free culture method. The expression of AQP5 in enriched GCSCs was explored using RT-qPCR and WB. Plate cloning, transwell, WB, RT-qPCR, and the sphere-forming assay were utilized to monitor the proliferation, migration, and self-renewal capability of GCSCs after AQP5 knockdown. WB and Immunofluorescence for Detecting the Effect of AQP5 on Autophagy. WB, RT-qPCR, and other experiments were used for in-depth investigation of the potential molecular regulatory mechanism of AQP5 in GC. Results: AQP5 was highly expressed in GC tissues and GC cells, and overexpression of AQP5 was associated with lymph node metastasis, increased tumor size, and low 5-year postoperative survival in GC patients; other studies have shown that the AQP5 was highly expressed in GCSCs. Knockdown of AQP5 suppressed tumorigenesis in vivo and inhibited the proliferative, migratory, and self-renewal capability of GCSCs. It was also found that AQP5 could activate the autophagy phenomenon of GCSCs, and mechanistically, we found that AQP5 could regulate TRPV4 to affect the self-renewal ability of GCSCs. Conclusion: AQP5 can be further explored for GC therapy, as it has shown a significant impact on the self-renewal capability of GCSCs, which prevents GC progression.

12.
Theranostics ; 14(9): 3565-3582, 2024.
Article de Anglais | MEDLINE | ID: mdl-38948069

RÉSUMÉ

Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.


Sujet(s)
Apoptose , Points de contrôle du cycle cellulaire , Inhibiteurs de désacétylase d'histone , Tumeurs de la prostate , cdc25 Phosphatases , Mâle , Tumeurs de la prostate/traitement médicamenteux , Tumeurs de la prostate/anatomopathologie , Humains , Animaux , Apoptose/effets des médicaments et des substances chimiques , Inhibiteurs de désacétylase d'histone/pharmacologie , Inhibiteurs de désacétylase d'histone/usage thérapeutique , Inhibiteurs de désacétylase d'histone/composition chimique , Lignée cellulaire tumorale , Points de contrôle du cycle cellulaire/effets des médicaments et des substances chimiques , cdc25 Phosphatases/métabolisme , Souris , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Prolifération cellulaire/effets des médicaments et des substances chimiques , Souris nude , Sélénium/pharmacologie , Sélénium/composition chimique , Sélénium/usage thérapeutique , Tests d'activité antitumorale sur modèle de xénogreffe , Promédicaments/pharmacologie , Promédicaments/composition chimique , Souris de lignée BALB C
13.
Angew Chem Int Ed Engl ; : e202409328, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958874

RÉSUMÉ

Proton supply is as critical as O2 activation for artificial photosynthesis of H2O2 via two-electron oxygen reduction reaction (2e- ORR). However, proton release via water dissociation is frequently hindered because of the sluggish water oxidation reaction (WOR), extremely limiting the efficiency of photocatalytic H2O2 production. To tackle this challenge, carboxyl-enriched supramolecular polymer (perylene tetracarboxylic acid - PTCA) is elaborately prepared by molecular self-assembly for overall photosynthesis of H2O2. Interestingly, the interconversion between carboxyl as Brønsted acid and its conjugated base realizes rapid proton circulation. Through this efficient tandem proton transfer process, the spatial effect of photocatalytic reduction and oxidation reaction is greatly enhanced with reduced reaction barrier. This significantly facilitates 2e- photocatalytic ORR to synthesize H2O2 and in the meanwhile promotes 4e- photocatalytic WOR to evolve O2. Consequently, the as-developed PTCA exhibits a remarkable H2O2 yield of 185.6 µM h-1 in pure water and air atmosphere under visible light illumination. More impressively, an appreciable H2O2 yield of 78.6 µM h-1 can be well maintained in an anaerobic system owing to in-situ O2 generation by 4e- photocatalytic WOR. Our study presents a novel concept for artificial photosynthesis of H2O2 via constructing efficient proton transfer pathway to enable rapid proton circulation.

16.
Angew Chem Int Ed Engl ; : e202407075, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38990170

RÉSUMÉ

Sodium metal batteries (SMBs) have received increasing attention due to the abundant sodium resources and high energy density, but suffered from the sluggish interfacial kinetic and unstable plating/stripping of sodium anode at low temperature, especially when matched with ester electrolytes. Here, we develop a stable ultra-low-temperature SMBs with high-capacity retention at -50°C in a weak solvated carbonate ester-based electrolyte, combined with an electrodeposited Na (Cu/Na) anode. The Cu/Na anode with electrochemically activated "deposited sodium" and stable inorganic-rich solid electrolyte interphase (SEI) was favor for the fast Na+ migration, therefore accelerating the interfacial kinetic process. As a result, the Cu/Na || NaCrO2 battery exhibited the highest capacity retention (compared to room-temperature capacity) in carbonate ester-based SMBs (98.05% at -25°C, 91.3% at -40°C, 87.9% at -50°C, respectively). The cyclic stability of 350 cycles at -25°C with a high energy efficiency of 96.15% and 70 cycles at -50°C can be achieved. Even in chill atmospheric environment with the fluctuant temperature, the battery can still operate over one month. This work provides a new opportunity for the development of low-temperature carbonate ester-based SMBs.

17.
Angew Chem Int Ed Engl ; : e202409409, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39008227

RÉSUMÉ

Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast-charging capability and low-temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial Li-ion transport. Here we report a wide-temperature-range ester-based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film-forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three-electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of -80°C to 80°C and outstanding fast-charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2% capacity retention after 1200 cycles (2 C) and 10-min charge to 89% (5 C) at 25°C and provides reliable power even at -80°C.

18.
Int J Biol Macromol ; : 133858, 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39009262

RÉSUMÉ

Recurrent oral ulcers are common oral mucosal lesions that severely reduce patients' quality of life. Commercial mucoadhesive films are easily disrupted due to oral movement and complex wet environments, thus reducing drug utilization and even causing toxic side effects. Herein, we report a mucoadhesive film composed of Ca2+-crosslinked carboxymethylated cellulose nanofibers and alginate, in which two drugs of dexamethasone (DXM) and dyclonine hydrochloride (DYC) are loaded for the treatment of oral ulcers. The wet films have a high Young's modulus of 7.1 ±â€¯2.6 MPa and a large strain of 53.6 ±â€¯9.8 % and adhere to tissue strongly, which allows them to resist the deformation caused by frequent oral movement. The films also have nice durability against water and excellent biocompatibility. Moreover, the drug release was controlled at different rates. The fast release of DYC facilitates the quick relief of pain, while the slow release of DXM benefits the long-term treatment of wounds. Finally, the animal experiment demonstrates the films displayed excellent therapeutic efficacy in healing oral ulcers.

19.
Curr Oncol Rep ; 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39012468

RÉSUMÉ

PURPOSE OF REVIEW: The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, an ongoing and exaggerated NETs formation may have adverse clinical consequences and even promote cancer progression. This review will discuss the complex relationship between NETosis and cancer progression. RECENT FINDINGS: NETs exhibits cancer-promoting effects by causing cancer metastaisis and tumor-associated thrombosis. Many studies have found that many mechanisms are involved in the process, and the corresponding targets could be applied for cancer therapy. Although NETs may have anti-bacteria effects, it is necessary to inhibit an excessive NETs formation, mostly showing cancer-promoting effects. The contribution of NETs to cancer progression has gained a growing appreciation and the approaches to targeting NETs deposition exhibited beneficial effects both in primary and metastatic tumors, which, however, has been challenged by a recent finding demonstrating an opposite effect of NETs to suppress tumor growth via the activation of immune response against tumor. This seeming discrepancy reflects we are in the early stage of NETs study facing fundamental questions and a better understanding of the underlying mechanism is urgently needed.

20.
Article de Anglais | MEDLINE | ID: mdl-38995704

RÉSUMÉ

The potential benefits of automatic radiology report generation, such as reducing misdiagnosis rates and enhancing clinical diagnosis efficiency, are significant. However, existing data-driven methods lack essential medical prior knowledge, which hampers their performance. Moreover, establishing global correspondences between radiology images and related reports, while achieving local alignments between images correlated with prior knowledge and text, remains a challenging task. To address these shortcomings, we introduce a novel Eye Gaze Guided Cross-modal Alignment Network (EGGCA-Net) for generating accurate medical reports. Our approach incorporates prior knowledge from radiologists' Eye Gaze Region (EGR) to refine the fidelity and comprehensibility of report generation. Specifically, we design a Dual Fine-Grained Branch (DFGB) and a Multi-Task Branch (MTB) to collaboratively ensure the alignment of visual and textual semantics across multiple levels. To establish fine-grained alignment between EGR-related images and sentences, we introduce the Sentence Fine-grained Prototype Module (SFPM) within DFGB to capture cross-modal information at different levels. Additionally, to learn the alignment of EGR-related image topics, we introduce the Multi-task Feature Fusion Module (MFFM) within MTB to refine the encoder output information. Finally, a specifically designed label matching mechanism is designed to generate reports that are consistent with the anticipated disease states. The experimental outcomes indicate that the introduced methodology surpasses previous advanced techniques, yielding enhanced performance on two extensively used benchmark datasets: Open-i and MIMIC-CXR.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...