Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Environ Sci Technol ; 2021 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-34310116

RÉSUMÉ

The increasing demand for rare earth elements (REEs) motivates the development of novel strategies for cost-effective REE recovery from secondary sources, especially rare earth tailings. The biggest challenges in recovering REEs from ion-adsorption rare earth tailings are incomplete extraction of cerium (Ce) and the coleaching of iron (Fe) and manganese (Mn). Here, a synergistic process between reduction and stabilization was proposed by innovatively using elemental sulfur (S) as reductant for converting insoluble CeO2 into soluble Ce2(SO4)3 and transforming Fe and Mn oxides into inert FeFe2O4 and MnFe2O4 spinel minerals. After the calcination at 400 °C, 97.0% of Ce can be dissolved using a diluted sulfuric acid, along with only 3.67% of Fe and 23.3% of Mn leached out. Thermodynamic analysis reveals that CeO2 was indirectly reduced by the intermediates MnSO4 and FeS in the system. Density functional theory calculations indicated that Fe(II) and Mn(II) shared similar outer electron arrangements and coordination environments, favoring Mn(II) over Ce(III) as a replacement for Fe(II) in the FeO6 octahedral structure of FeFe2O4. Further investigation on the leaching process suggested that 0.5 mol L-1 H2SO4 is sufficient for the recovery of REEs (97.0%). This research provides a promising strategy to selectively recover REEs from mining tailings or secondary sources via controlling the mineral phase transformation.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE