Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 587
Filtrer
1.
Wideochir Inne Tech Maloinwazyjne ; 19(2): 178-186, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38973793

RÉSUMÉ

Introduction: In patients with pulmonary nodules (PNs), computed tomography (CT)-guided localization is commonly performed prior to the resection of these nodules through video-assisted thoracic surgery (VATS). Aim: To evaluate the relative clinical efficacy of coil and anchored needle (AN) insertion as approaches to preoperative CT-guided PN localization. Material and methods: This single-center, prospective, open-label, randomized controlled trial (registration number: NCT05183945) enrolled consecutive patients from January 2022 to July 2022, assigning these patients at random to undergo either coil or AN localization prior to VATS. Efficacy and safety outcomes in these two groups were then compared. Results: This study enrolled in total 100 patients with 120 PNs who were assigned at random to the coil (patients = 50; PNs = 60) and AN (patients = 50; PNs = 60) localization groups. The respective technical success rates for coil and AN localization were 98.3% (59/60) and 100% (60/60), with no significant difference between the groups (p = 1.000). The coil group had a significantly longer median duration of localization relative to the AN group (16.0 min vs. 8.0 min, p < 0.001). Similar rates of localization-related pneumothorax (8.3% vs. 5.0%, p = 0.715) and pulmonary hemorrhage (5.0% vs. 13.3%, p = 0.110) were observed in both groups. In addition, the VATS resection procedures achieved 100% technical success rates in both of these localization groups. Conclusions: Both coil- and AN-based localization approaches can be successfully employed to localize PNs prior to VATS resection, with the AN localization procedure requiring less time to complete on average as compared to the coil-based approach.

2.
Heliyon ; 10(12): e32621, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38975179

RÉSUMÉ

Background: The exosome is a critical component of the intercellular communication., playing a vital role in regulating cell function. These small vesicles contain proteins, mRNAs, miRNAs, and lncRNAs, surrounded by lipid bilayer substances. Most cells in the human body can produce exosomes, released into various body fluids such as urine, blood, and cerebrospinal fluid. Bladder cancer is the most common tumor in the urinary system, with high recurrence and metastasis rates. Early diagnosis and treatment are crucial for improving patient outcomes. Methods: This study employed the PubMed search engine to retrieve publicly accessible data pertaining to urinary exosomes. Results: We summarize the origins and intricate biological characteristics of urinary exosomes, the introduction of research methodologies used in basic experiments to isolate and analyze these exosomes, the discussion of their applications and progress in the diagnosis and treatment of bladder cancer, and the exploration of the current limitations associated with using urinary exosomes as molecular biomarkers for diagnosing bladder cancer. Conclusion: Exosomes isolated from urine may be used as molecular biomarkers for early detection of bladder cancer.

3.
BMC Genomics ; 25(1): 641, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38937677

RÉSUMÉ

BACKGROUND: The Alpine Merino is a new breed of fine-wool sheep adapted to the cold and arid climate of the plateau in the world. It has been popularized in Northwest China due to its superior adaptability as well as excellent production performance. Those traits related to body weight, wool yield, and wool fiber characteristics, which are economically essential traits in Alpine Merino sheep, are controlled by QTL (Quantitative Trait Loci). Therefore, the identification of QTL and genetic markers for these key economic traits is a critical step in establishing a MAS (Marker-Assisted Selection) breeding program. RESULTS: In this study, we constructed the high-density genetic linkage map of Alpine Merino sheep by sequencing 110 F1 generation individuals using WGR (Whole Genome Resequencing) technology. 14,942 SNPs (Single Nucleotide Polymorphism) were identified and genotyped. The map spanned 2,697.86 cM, with an average genetic marker interval of 1.44 cM. A total of 1,871 high-quality SNP markers were distributed across 27 linkage groups, with an average of 69 markers per LG (Linkage Group). Among them, the smallest genetic distance is 19.62 cM for LG2, while the largest is 237.19 cM for LG19. The average genetic distance between markers in LGs ranged from 0.24 cM (LG2) to 3.57 cM (LG17). The marker density in the LGs ranged from LG14 (39 markers) to LG1 (150 markers). CONCLUSIONS: The first genetic map of Alpine Merino sheep we constructed included 14,942 SNPs, while 46 QTLs associated with body weight, wool yield and wool fiber traits were identified, laying the foundation for genetic studies and molecular marker-assisted breeding. Notably, there were QTL intervals for overlapping traits on LG4 and LG8, providing potential opportunities for multi-trait co-breeding and further theoretical support for selection and breeding of ultra-fine and meaty Alpine Merino sheep.


Sujet(s)
Poids , Cartographie chromosomique , Polymorphisme de nucléotide simple , Locus de caractère quantitatif , Laine , Animaux , Poids/génétique , Laine/croissance et développement , Ovis/génétique , Liaison génétique , Marqueurs génétiques , Séquençage du génome entier , Phénotype , Ovis aries/génétique , Génotype
4.
J Control Release ; 371: 516-529, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38849095

RÉSUMÉ

Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.


Sujet(s)
Administration par voie cutanée , Techniques de transfert de gènes , Humains , Animaux , Thérapie génétique/méthodes , Peau/métabolisme , Systèmes de délivrance de médicaments
5.
Arthrosc Tech ; 13(5): 102966, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38835442

RÉSUMÉ

As an important structure for maintaining the hoop tension of the medial meniscus of the knee joint, the posterior root is receiving increasing attention. Medial meniscus posterior root tear is an important reason for the occurrence, development, and kinematics changes of knee osteoarthritis. It is necessary to repair the posterior root of meniscus for restoring joint kinematics and improving clinical efficacy. This Technical Note reports a medial meniscus posterior root tear repair technique using arthroscopic transtibial pullout repair (ATPR) combined with tibial condylar valgus osteotomy. The aim of this technique is to repair the posterior root of the medial meniscus while correcting the force line through osteotomy, opening the joint gap, improving the joint surface fit, providing a good mechanical environment for meniscus repair, thereby improving the healing rate of the posterior root of the meniscus and reducing the risk of retear. Although clinical evidence is currently limited, we believe that this technology may have more clinical advantages compared with ATPR alone or ATPR combined with high tibial osteotomy.

6.
Article de Anglais | MEDLINE | ID: mdl-38830270

RÉSUMÉ

Electrocatalytic sulfur reduction reaction (SRR) is emerging as an effective strategy to combat the polysulfide shuttling effect, which remains a critical factor impeding the practical application of the Li-S battery. Single-atom catalyst (SAC), one of the most studied catalytic materials, has shown considerable potential in addressing the polysulfide shuttling effect in a Li-S battery. However, the role played by transition metal vs coordination mode in electrocatalytic SRR is trial-and-error, and the general understanding that guides the synthesis of the specific SAC with desired property remains elusive. Herein, we use first-principles calculations and machine learning to screen a comprehensive data set of graphene-based SACs with different transition metals, heteroatom doping, and coordination modes. The results reveal that the type of transition metal plays the decisive role in SAC for electrocatalytic SRR, rather than the coordination mode. Specifically, the 3d transition metals exhibit admirable electrocatalytic SRR activity for all of the coordination modes. Compared with the reported N3C1 and N4 coordinated graphene-based SACs covering 3d, 4d, and 5d transition metals, the proposed para-MnO2C2 and para-FeN2C2 possess significant advantages on the electrocatalytic SRR, including a considerably low overpotential down to 1 mV and reduced Li2S decomposition energy barrier, both suggesting an accelerated conversion process among the polysulfides. This study may clarify some understanding of the role played by transition metal vs coordination mode for SAC materials with specific structure and desired catalytic properties toward electrocatalytic SRR and beyond.

7.
Carbohydr Polym ; 340: 122285, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-38858002

RÉSUMÉ

Although many preparation methods have been reported so far, it is still a great challenge for intelligent packaging films with both excellent mechanical properties and very high sensitivity. Herein, we report a facile method to prepare performance-enhanced pectin (PC)/carboxymethyl cellulose sodium (CMC)/anthocyanins (ACNs)/metal ion films by crosslinking with metal ions (Zn2+, Mg2+ and Ca2+). Cross-linking reaction between PC/CMC and metal ions significantly improved water resistance and mechanical properties of composite films (P < 0.05). Even at high relative humidity (RH = 84 %), cross-linking of Ca2+, Mg2+, and Zn2+ significantly increased the tensile index of the films by 1.37, 1.41, and 1.52 times (P < 0.05), respectively. Moreover, the complexation of metal ions/polysaccharides with ACNs reduced the decomposition rate of ACNs, improved the storage stability and antioxidant capacity of ACNs, and also increased the sensitivity of the colorimetric response of the indicator films in monitoring shrimp freshness. Thus, with this high sensitivity, the Red, Green and Blue (RGB) values of the films can be determined using a mobile phone application to monitor shrimp safety in real time. These results suggest that ACNs-metal cation-polysaccharide composite films have great potential for smart packaging applications.

8.
Cell Metab ; 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38851189

RÉSUMÉ

Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF190H alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.

9.
Front Plant Sci ; 15: 1393621, 2024.
Article de Anglais | MEDLINE | ID: mdl-38903439

RÉSUMÉ

Seed quality traits of oilseed rape, Brassica napus (B. napus), exhibit quantitative inheritance determined by its genetic makeup and the environment via the mediation of a complex genetic architecture of hundreds to thousands of genes. Thus, instead of single gene analysis, network-based systems genomics and genetics approaches that combine genotype, phenotype, and molecular phenotypes offer a promising alternative to uncover this complex genetic architecture. In the current study, systems genetics approaches were used to explore the genetic regulation of lignin traits in B. napus seeds. Four QTL (qLignin_A09_1, qLignin_A09_2, qLignin_A09_3, and qLignin_C08) distributed on two chromosomes were identified for lignin content. The qLignin_A09_2 and qLignin_C08 loci were homologous QTL from the A and C subgenomes, respectively. Genome-wide gene regulatory network analysis identified eighty-three subnetworks (or modules); and three modules with 910 genes in total, were associated with lignin content, which was confirmed by network QTL analysis. eQTL (expression quantitative trait loci) analysis revealed four cis-eQTL genes including lignin and flavonoid pathway genes, cinnamoyl-CoA-reductase (CCR1), and TRANSPARENT TESTA genes TT4, TT6, TT8, as causal genes. The findings validated the power of systems genetics to identify causal regulatory networks and genes underlying complex traits. Moreover, this information may enable the research community to explore new breeding strategies, such as network selection or gene engineering, to rewire networks to develop climate resilience crops with better seed quality.

10.
J Am Chem Soc ; 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38940387

RÉSUMÉ

The rapidly evolving field of inorganic solid-state electrolytes (ISSEs) has been driven in recent years by advances in data-mining techniques, which facilitates the high-throughput computational screening for candidate materials in the databases. The key to the mining process is the selection of critical features that underline the similarity of a material to an existing ISSE. Unfortunately, this selection is generally subjective and frequently under debate. Here we propose a subgraph isomorphism matching method that allows an objective evaluation of the similarity between two compounds according to the topology of the local atomic environment. The matching algorithm has been applied to discover four structure types that are highly analogous to the LiTi2(PO4)3 NASICON prototype. We demonstrate that the local atomic environments similar to LiTi2(PO4)3 endow these four structures with favorable Li diffusion tunnels and ionic conductivity on par with those of the prototype. By further taking into account the electronic structure and electrochemical stability window, 13 compounds are identified to be potential ISSEs. Our findings not only offer a promising approach toward rapid mining of fast ion conductors without limitation in the compositional range but also reveal insights into the design of ISSEs according to the topology of their framework structures.

11.
BMC Genomics ; 25(1): 606, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38886664

RÉSUMÉ

BACKGROUND: Gangba sheep as a famous breed of Tibetan sheep, its wool color is mainly white and black. Gangba wool is economically important as a high-quality raw material for Tibetan blankets and Tibetan serge. However, relatively few studies have been conducted on the wool color of Tibetan sheep. RESULTS: To fill this research gap, this study conducted an in-depth analysis of two populations of Gangba sheep (black and white wool color) using whole genome resequencing to identify genetic variation associated with wool color. Utilizing PCA, Genetic Admixture, and N-J Tree analyses, the present study revealed a consistent genetic relationship and structure between black and white wool colored Gangba sheep populations, which is consistent with their breed history. Analysis of selection signatures using multiple methods (FST, π ratio, Tajima's D), 370 candidate genes were screened in the black wool group (GBB vs GBW); among them, MC1R, MLPH, SPIRE2, RAB17, SMARCA4, IRF4, CAV1, USP7, TP53, MYO6, MITF, MC2R, TET2, NF1, JAK1, GABRR1 genes are mainly associated with melanin synthesis, melanin delivery, and distribution. The enrichment results of the candidate genes identified 35 GO entries and 19 KEGG pathways associated with the formation of the black phenotype. 311 candidate genes were screened in the white wool group (GBW vs GBB); among them, REST, POU2F1, ADCY10, CCNB1, EP300, BRD4, GLI3, and SDHA genes were mainly associated with interfering with the differentiation of neural crest cells into melanocytes, affecting the proliferation of melanocytes, and inhibiting melanin synthesis. 31 GO entries and 22 KEGG pathways were associated with the formation of the white phenotype. CONCLUSIONS: This study provides important information for understanding the genetic mechanism of wool color in Gangba, and provides genetic knowledge for improving and optimizing the wool color of Tibetan sheep. Genetic improvement and selective breeding to produce wool of specific colors can meet the demand for a diversity of wool products in the Tibetan wool textile market.


Sujet(s)
Polymorphisme de nucléotide simple , Laine , Animaux , Ovis/génétique , Sélection génétique , Pigmentation/génétique , Étude d'association pangénomique
12.
Angew Chem Int Ed Engl ; : e202403541, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38885002

RÉSUMÉ

The exploration of cell-based drug delivery systems for cancer therapy has gained growing attention. Approaches to engineering therapeutic cells with multidrug loading in an effective, safe, and precise manner while preserving their inherent biological properties remain of great interest. Here, we report a strategy to simultaneously load multiple drugs in platelets in a one-step fusion process. We demonstrate doxorubicin (DOX)-encapsulated liposomes conjugated with interleukin-15 (IL-15) could fuse with platelets to achieve both cytoplasmic drug loading and surface cytokine modification with a loading efficiency of over 70 % within minutes. Due to their inherent targeting ability to metastatic cancers and postoperative bleeding sites, the engineered platelets demonstrated a synergistic therapeutic effect to suppress lung metastasis and postoperative recurrence in mouse B16F10 melanoma tumor models.

13.
Intervirology ; 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38934174

RÉSUMÉ

INTRODUCTION: This study aimed to investigate the differences between pregnant women with chronic hepatitis B virus (HBV) infection and intrafamilial infection and those without intrafamilial infection. METHODS: HBV DNA was extracted from the sera of 16 pregnant women with chronic hepatitis B (CHB) and their family members for gene sequencing and phylogenetic analyses. A total of 74 pregnant women with CHB were followed up from the second trimester to three months postpartum. Viral markers and other laboratory indicators were compared between pregnant women with CHB with and without intrafamilial infection. RESULTS: The phylogenetic tree showed that HBV lines in the mother-spread pedigree shared a node, whereas there was an unrelated genetic background for HBV lines in individuals without intrafamilial infection. From delivery to three months postpartum, compared with those without intrafamilial infection, pregnant women with intrafamilial infection were related negatively to HBV DNA (ß=-0.43, 95% Confidence Interval [CI]: -0.76 to -0.12, p=0.009), HBeAg (ß=-195.15, 95% CI: -366.35 to -23.96, p=0.027), and hemoglobin changes (ß=-8.09, 95%CI: -15.54 to -0.64, p=0.035) and positively to changes in the levels of alanine aminotransferase (ß=73.9, 95%CI:38.92-108.95, p<0.001) and albumin (ß=2.73, 95% CI:0.23-5.23, p=0.033). CONCLUSION: The mother-spread pedigree spread model differs from that of non-intrafamilial infections. Pregnant women with intra-familial HBV infection have less hepatitis flares and liver damage, but their HBV DNA and HBeAg levels rebound faster after delivery, than those without intra-familial infection by the virus.

14.
J Hazard Mater ; 473: 134595, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38761769

RÉSUMÉ

A biocatalytic system comprising fungal laccase and mediators can generate phenol radicals and efficiently eliminate various triarylmethane dyes. This study systematically explores the kinetic impact of dissolved organic matter (DOM), represented by humic substance (HS consisting of 90% fulvic acid, from lignite), on the decolorization of seven typical triarylmethane dyes by Trametes versicolor laccase and twenty natural mediators. Among these, 4-hydroxybenzyl alcohol (4-HA) and methyl violet (MV) undergo in-depth investigation regarding degradation products, pathways, and reaction mechanisms. In instances where HS hampers laccase-alone decolorization, such as malachite green, Coomassie brilliant blue, bromophenol blue, and acid magenta, this inhibition may persist despite mediator introduction. Conversely, in cases where HS facilitates decolorization, such as crystalline violet and ethyl violet, most laccase-mediator systems (LMSs) can still benefit. For MV decolorization by laccase and 4-HA, HS's kinetic effect is controlled by concentration and reaction time. A 5 mg/L HS increased the decolorization rate from 50% to 67% within the first hour, whereas 10 mg/L HS only achieved 45%. After 16 h of reaction, HS's impact on decolorization rate diminishes. Furthermore, the addition of HS enhances precipitation production, probably due to its involvement in polymerization with MV and mediator. Computational simulations and spectral monitoring reveal that low HS concentrations accelerate laccase-mediated demethylation by disrupting the chromophores bound to MV, thus promoting the decolorization of MV. Conversely, inhibition by high HS concentrations stems from the competitive binding of the enzyme pocket to the mediator, and the reduction of phenol free radicals in the system. Molecular docking and kinetic simulations revealed that laccase forms complexes with both the mediator and MV. Interestingly, the decolorization of MV occurred through a non-radical mechanism in the presence of HS. This work provided a reference for screening of high catalytic performance mediators to remove triarylmethane dyes in the actual water environment.


Sujet(s)
Agents colorants , Laccase , Laccase/métabolisme , Laccase/composition chimique , Agents colorants/composition chimique , Substances humiques , Cinétique , Polluants chimiques de l'eau/composition chimique , Benzopyranes/composition chimique , Simulation de docking moléculaire , Polyporaceae/enzymologie
15.
Redox Biol ; 73: 103217, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38820984

RÉSUMÉ

Wound infection of hyperglycemic patient often has extended healing period and increased probability due to the high glucose level. However, achieving precise and safe therapy of the hyperglycemic wound with specific wound microenvironment (WME) remains a major challenge. Herein, a WME-activated smart L-Arg/GOx@TA-Fe (LGTF) nanozymatic system composed of generally recognized as safe (GRAS) compound is engineered. The nanozymatic system combining metal-polyphenol nanozyme (tannic acid-Fe3+, TA-Fe) and natural enzyme (glucose oxidase, GOx) can consume the high-concentration glucose, generating reactive oxygen species (ROS) and nitric oxide (NO) in situ to synergistically disinfect hyperglycemia wound. In addition, glucose consumption and gluconic acid generation can lower glucose level to promote wound healing and reduce the pH of WME to enhance the catalytic activities of the LGTF nanozymatic system. Thereby, low-dose LGTF can perform remarkable synergistic disinfection and healing effect towards hyperglycemic wound. The superior biosafety, high catalytic antibacterial and beneficial WME regulating capacity demonstrate this benign GRAS nanozymatic system is a promising therapeutic agent for hyperglycemic wound.


Sujet(s)
Glucose oxidase , Hyperglycémie , Monoxyde d'azote , Espèces réactives de l'oxygène , Cicatrisation de plaie , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Hyperglycémie/traitement médicamenteux , Hyperglycémie/métabolisme , Espèces réactives de l'oxygène/métabolisme , Monoxyde d'azote/métabolisme , Animaux , Glucose oxidase/métabolisme , Humains , Souris , Glucose/métabolisme , Rats , Antibactériens/pharmacologie , Antibactériens/composition chimique
16.
Int J Biol Macromol ; 271(Pt 1): 132119, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38816297

RÉSUMÉ

Hyaluronic acid-based hydrogels have been broadly used in medical applications due to their remarkable properties such as biocompatibility, biodegradability, super hydroscopicity, non-immunogenic effect, etc. However, the inherent weak and hydrophilic polysaccharide structure of pure hyaluronic acid (HA) hydrogels has limited their potential use in muco-adhesiveness, wound dressing, and 3D printing. In this research, we developed in-situ forming of catechol-modified HA hydrogels with improved mechanical properties involving blue-light curing crosslinking reaction. The effect of catechol structure on the physicochemical properties of HA hydrogels was evaluated by varying the content (0-40 %). The as-synthesized hydrogel demonstrated rapid prototyping, excellent wetting adhesiveness, and good biocompatibility. Furthermore, an optimized hydrogel precursor solution was used as a blue light-cured bio-ink with high efficiency and good precision and successfully prototyped a microstructure that mimicked the human hepatic lobule by using DLP 3D printing method. This catechol-modified HA hydrogel with tunable physicochemical and rapid prototyping properties has excellent potential in biomedical engineering.


Sujet(s)
Catéchols , Acide hyaluronique , Hydrogels , Acide hyaluronique/composition chimique , Hydrogels/composition chimique , Catéchols/composition chimique , Humains , Impression tridimensionnelle , Matériaux biocompatibles/composition chimique , Adhésivité
17.
Article de Anglais | MEDLINE | ID: mdl-38700537

RÉSUMÉ

BACKGROUND: Understanding the pathophysiology of sudden sensorineural hearing loss (SSNHL) and identifying its clinical symptoms and associated risk factors are crucial for doctors in order to create effective prevention and therapeutic methods for this prevalent otolaryngologic emergency. METHODS: This study focuses on investigating the correlation between the C-reactive protein/albumin ratio (CAR) and SSNHL complicated by hypertension. In this study, 120 patients diagnosed with SSNHL were divided into groups with and without hypertension, and propensity score matching was used to compare and analyze the severity, type, prognosis, and CAR levels in SSNHL. RESULTS: The results showed that the SSNHL group with hypertension had significantly higher CAR levels, age, hearing curve abnormalities, and more severe hearing loss compared to the control group with isolated SSNHL. These differences were statistically significant (p < 0.001). Among different subtypes of SSNHL, CAR levels increased progressively with the advancement of the condition, and these differences were also statistically significant (p < 0.001). CONCLUSION: In summary, in patients with SSNHL, those with hypertension had higher CAR levels than those without a history of hypertension, and they experienced more severe hearing loss. Moreover, there was a clear correlation between CAR levels and the extent of SSNHL, indicating that greater CAR levels in patients with SSNHL are connected to more severe hearing loss in various hearing patterns and perhaps indicative of a poorer prognosis.

18.
Sensors (Basel) ; 24(9)2024 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-38732930

RÉSUMÉ

The temperature and strain fields monitoring during the preparation process of buoyancy materials, as well as the health status after molding, are important for mastering the mechanical properties of buoyancy materials and ensuring the safety of operators and equipment. This paper proposes a short and high-density femtosecond fiber Bragg grating (fs-FBG) array based on different temperature coefficients fibers. By optimizing the parameters of femtosecond laser point-by-point writing technology, high-performance fs-FBG arrays with millimeter level gating length and millimeter level spatial resolution were prepared on two types of fibers. These were successfully embedded in buoyancy materials to achieve in-situ online monitoring of the curing process and after molding. The experimental results show that the fs-FBG array sensor has good anti-chirp performance and achieves online monitoring of millimeter-level spatial resolution. Intelligent buoyancy materials can provide real-time feedback on the health status of equipment in harsh underwater environments. The system can achieve temperature monitoring with an accuracy of 0.56 °C and deformation monitoring with sub-millimeter accuracy; the error is in the order of micrometers, which is of great significance in the field of deep-sea exploration.

19.
Foods ; 13(10)2024 May 18.
Article de Anglais | MEDLINE | ID: mdl-38790874

RÉSUMÉ

The loss of distinctive aromas due to sterilization significantly hinders efforts to enhance the sensory quality of fruit and vegetable juices. This study aimed to elucidate the impacts of high-hydrostatic pressure (HHP) and high-temperature short-time (HTST) sterilization methods on the loss of C6 aldehyde aroma-active compounds in red raspberry juice. External standard quantification and quantitative descriptive analysis (QDA) revealed a notable decline in the levels of hexanal and (Z)-3-hexenal following the HHP and HTST treatments (p < 0.05), resulting in a marked attenuation of the grassy aroma characteristic of red raspberry juice. Furthermore, a comprehensive examination of the precursors, pivotal enzymes, intermediates, and downstream aromas within the fatty acid metabolism pathway in different raspberry juice samples indicated that the C6 aldehydes loss induced by HHP and HTST sterilizations was primarily ascribed to the competitive inhibition of ß-oxidation and the hindered enzymatic oxidation of fatty acids. These insights suggest that modifying sterilization protocols and enhancing enzymatic stability may help preserve the aroma integrity of raspberry juice. Our findings offer practical guidance for optimizing juice processing techniques to maintain flavor.

20.
Front Genet ; 15: 1380746, 2024.
Article de Anglais | MEDLINE | ID: mdl-38798700

RÉSUMÉ

The increasing incidence and mortality of prostate cancer worldwide significantly impact the life span of male patients, emphasizing the urgency of understanding its pathogenic mechanism and associated molecular changes that regulate tumor progression for effective prevention and treatment. RNA modification, an important post-transcriptional regulatory process, profoundly influences tumor cell growth and metabolism, shaping cell fate. Over 170 RNA modification methods are known, with prominent research focusing on N6-methyladenosine, N7-methylguanosine, N1-methyladenosine, 5-methylcytidine, pseudouridine, and N4-acetylcytidine modifications. These alterations intricately regulate coding and non-coding RNA post-transcriptionally, affecting the stability of RNA and protein expression levels. This article delves into the latest advancements and challenges associated with various RNA modifications in prostate cancer tumor cells, tumor microenvironment, and core signaling molecule androgen receptors. It aims to provide new research targets and avenues for molecular diagnosis, treatment strategies, and improvement of the prognosis in prostate cancer.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...